Impact of Percutaneous Coronary Intervention for Left Anterior Descending Artery Chronic Total Occlusion

Seung-Woon Rha*, Byoung Geol Choi, Se Yeon Choi, Yoonjee Park, Raghu Akkala, Sung II Lim, Ji Bak Kim, Sunki Lee, Jin Oh Na, Cheol Ung Choi, Hong Euy Lim, Jin Won Kim, Eung Ju Kim, Chang Gyu Park, Hong Seog Seo, Dong Joo Oh

> Cardiovascular Center, Korea University Guro Hospital

> > *swrha617@yahoo.co.kr

Background

1. Chronic total occlusion (CTO) intervention is still challenging because of the limited procedural success rate and high target lesion failure.

 The impact of percutaneous coronary intervention (PCI) for chronic total occlusion (CTO) in patients (pts) with left anterior descending artery (LAD) is not clear.

The aim of this study was to evaluate the 12-month clinical outcomes between PCI and optimal medical therapy (OMT) for LAD-CTO pts.

1. Study Population

A total of 218 consecutive LAD-CTO pts were divided into 2 groups according to treatment strategy.

2. Study Groups

LAD CTO with PCI group (n=117) LAD CTO with OMT group (n=101)

3. Antiplatelet Regimen

- 1) All pts received Aspirin; 100 mg orally.
- 2) All pts received Clopidogrel (Plavix®) preloaded 300-600 mg before PCI, followed by daily administration of 75 mg and encouraged to continue at least for 1 year.
- Usage of adjunctive Cilostazol to dual antiplatelet regimen (asprin + clopidogrel) was depending on physician's discretion. Cilostazol was administered by 200mg postloading and then 100mg bid for at least one month

4. Antithrombotic therapy used for PCI

- 1) Enoxaparin (Clexane®); 60mg bid before PCI and after PCI during the hospital stay (within 7 days).
- 2) Unfractionated Heparin; a bolus of 50 U/kg prior to PCI for 1st one hour
- 3) GP IIbIIIa blocker (Reopro®); depend on physician's discretion.

5. PCI Procedure

- 1) A variety of atheroablative devices were not utilized and mostly simple predilation or was performed to get an adequate luminal diameter which was necessary to accommodate the unexpanded DES and their delivery system.
- 2) Thrombus aspiration or mechanical thrombectomy were performed if clinically indicated.

6. Study Endpoints

; Six-month angiographic and 1-year clinical outcomes were compared between the two groups.

Statistics

- 1. All statistical analyses were performed using SPSS 20.0.
- 2. Continuous variables were expressed as means \pm standard deviation and were compared using Student's t-test.
- 3. Categorical data were expressed as percentages and were compared using chi-square statistics or Fisher's exact test.
- 4. A *P*-value of 0.05 was considered statistically significant.

Results

Baseline Clinical Characteristics (1)

	PCI OMT		n Value	
Variables, n (%)	(n =117)	(n=101)	p-value	
Gender (male)	84 (71.7) 68 (67.3)		0.474	
Age	60.5 ± 11.5	66.1 ± 10.1	< 0.001	
LVEF%	48.3 ± 12.8	45.9 <u>±</u> 15.4	0.242	
Myocardial Infarction	32 (27.3)	19 (18.8)	0.138	
STEMI	13 (11.1)	9 (8.9)	0.591	
NSTEMI	19 (16.2)	9 (8.9)	0.107	
Prior MI	14 (11.9)	9 (8.9)	0.464	
Prior PCI	22 (18.8)	12 (11.8)	0.160	
Prior CABG	1 (0.8) 2 (1.9)		0.477	
Hypertension	74 (63.2) 67 (66.3)		0.634	
Diabetes	39 (33.3)	39 (33.3) 37 (36.6)		
Insulin	12 (10.2)	8 (7.9)	0.551	
Hyperlipidemia	32 (27.3)	33 (32.6)	0.392	
CVA	7 (5.9)	13 (12.8)	0.079	
Hemorrhagic	1 (0.8)	2 (1.9)	0.477	
Ischemic	6 (5.1)	11 (10.8)	0.114	
Peripheral vascular disease	4 (3.4)	6 (5.9)	0.375	
Chronic kidney disease	4 (3.4)	5 (4.9)	0.571	

Baseline Clinical Characteristics (2)

	PCI OMT		n Voluo	
Variables, n (%)	(n=117)	(n=101)	p-value	
Smoking history	61 (52.1)	47 (46.5)	0.409	
Current smoker	53 (45.2)	31 (30.6)	0.027	
Quit smoker	8 (6.8)	16 (15.8)	0.034	
Congestive heart failure	13 (11.1)	23 (22.7)	0.021	
NYHA Class				
class 1	66 (56.4)	59 (58.4)	0.060	
class 2	32 (27.3)	21 (20.7)		
class 3	12 (10.2)	10 (9.9)		
class 4	7 (5.9)	11 (10.8)		
CCS class				
class 1	20 (17.0)	66 (65.3)		
class 2	35 (29.9)	19 (18.8)		
class 3	40 (34.1)	11 (10.8)		
class 4	22 (18.8)	5 (4.9)		

Baseline Lesion Characteristics

	PCI	OMT		
Variables, n (%)	(n =117)	(n=101)	p-value	
De novo	110 (94.0)	97 (96.0)	0.496	
Significant lesion site				
Left Main (>50%)	2 (1.7)	15 (14.8)	<0.001	
LAD (>70%)	117 (100.0)	101 (100.0)	-	
LCX (>70%)	29 (24.7)	57 (56.4)	< 0.001	
RCA (>70%)	16 (13.6)	57 (56.4)	< 0.001	
RAMUS (>70%)	3 (2.5)	4 (3.9)	0.560	
Non CTO procedure	40 (34.1)	38 (37.6)	0.598	
Failed CTO procedure	0 (0.0)	0 (0.0) 27 (26.7)		
CTO lesion site				
LAD	117 (100.0)	101 (100.0)	-	
LCX	2 (1.7)	14 (13.8)	0.001	
RCA	6 (5.1)	19 (18.8)	0.002	
RAMUS				
CTO location				
Ostium to proximal	49 (41.8)	49 (41.8) 65 (64.3)		
Mid	66 (56.4)	36 (35.6)		
Distal	2 (1.7)	0 (0.0)		
Collateral (>grade1)	69 (58.9)	76 (75.2)		
Collateral Grade				
Geade0	9 (7.6)	8 (7.9)	NS	
Geade1	39 (33.3)	17 (16.8)		
Geade2	30 (25.6)	46 (45.5)		
Geade3	39 (33.3)	30 (29.7)		

Baseline Laboratory Findings

	PCI	OMT	n Valuo	
Variables, n (%)	(n=117)	(n=101)	p-value	
Hemoglobin	13.4 ± 1.7	13.0 ± 1.7	0.082	
Total cholesterol	166 <u>+</u> 37	164 <u>+</u> 44	0.693	
Triglyceride	147 ± 81	127 ± 75	0.092	
HDLc	42 ± 9	$42 \pm 9 \qquad \qquad 44 \pm 1 \boxed{1}$		
LDLc	111 <u>±</u> 39	105 <u>+</u> 36	0.376	
Fasting glucose	124 ± 43	118 ± 48	0.380	
Hb A1c	6.4 ± 1.1	6.5 ± 1.4	0.600	
hsCRP	14.1 ± 45.8	11.5 ± 24.1	0.676	
ESR	29 ± 27	35 ± 31	0.214	
Fibrinogen	380 ± 153	361 ± 192	0.620	
CKMB	9.4 ± 23.1	18.5 ± 51.9	0.220	
Troponine T	0.25 ± 0.81	0.80 ± 2.84	0.235	
Myoglobin	188 <u>+</u> 511	117 ± 210	0.494	
BNP	$2982 \pm 75\overline{33}$	3947 <u>+</u> 8778	0.545	
Creatinine	0.90 ± 0.39	1.01 ± 0.24	0.143	
Uric acid	5.50 ± 1.78	5.32 ± 1.58	0.671	

LV Function Change

Left Ventricular Ejection Fraction (LVEF), %	PCI OMT (n=117) (n=45)		p-Value
Initial -LVEF%	45.6 ± 13.1	44.5 <u>+</u> 14.5	0.242
FU - LVEF%	48.7 ± 13.1	45.4 <u>+</u> 13.7	0.242
Paired t-test (p-Value)	0.002	0.622	0.092

Twelve-month Clinical Outcomes

Variables, n (%)	PCI	OMT	P-Value	P-Value	Adjusted OR
	(n=116)	(n=84)	(Unadjusted)	(Adjusted)	(96% C.I)
Mortality	5 (4.3)	7 (8.3)	0.237	0.187	1.92 (0.43-8.57)
Cardiac death	4 (3.4)	4 (4.7)	0.640	NS	
Non cardiac death	1 (0.8)	2 (2.3)	0.383	NS	-
Myocardial infarction	6 (5.1)	4 (4.7)	0.895	0.129	6.81 (0.7-81.3)
Q-wave MI	5 (4.3)	3 (3.5)	0.792	NS	-
Non-Q wave MI	1 (0.8)	1 (1.1)	0.818	NS	-
Revascularization	10 (8.6)	4 (4.7)	0.291	0.768	1.23 (0.30-4.94)
TLR	8 (6.8)	0 (0.0)	0.014	0.679	1.52 (0.20-11.2)
TVR	10 (8.6)	2 (2.3)	0.067	0.572	1.53 (0.34-6.82)
Non TVR	0 (0.0)	2 (2.3)	0.095	NS	-
All MACE	15 (12.9)	10 (11.9)	0.829	0.633	1.35 (0.39-4.70)
TLR-MACE	12 (10.3)	5 (5.9)	0.272	NS	-
TVR-MACE	15 (12.9)	8 (9.5)	0.456	NS	-

Adjusted by gender, age, myocardial infarction, hypertension, diabetes, chronic kidney disease, current smoker, multivessel disease, collateral vessels(\geq grade 2), and failed CTO procedure.

Results (1)

- At baseline, the OMT group had a higher prevalence of elderly, congestive heart failure, left main disease, multivessel disease, multivessel CTO, LCX-CTO, RCA-CTO, and well-developed collaterals (≥grade 2), whereas the PCI group had a higher prevalence of current smokers.
- 2. Although the LV function was not different in between PCI and OMT strategy at baseline and follow up, the LV function improvement was significant in PCI group.

Results (2)

3. At univariate analysis (before adjustment), the PCI group had a higher incidence of repeat PCI, especially TLR.

4. Clinical outcomes at 12 months after baseline adjustment by multivariate analysis showed similar major hard endpoints including mortality, myocardial infarction, revascularization and major adverse cardiac events (Table).

Conclusion

- 1. In our study, PCI seems to be associated with significant LV function improvement as compared with OMT strategy in pts with LAD CTO.
- 2. However, major clinical outcomes were not different between two strategies.
- 3. Long-term follow up with a larger study population will be necessary for definite conclusion.