Joint Meeting of Coronary Revascularization

December 13~14, 2013 | Busan, Korea

Platelet Function Beyond Hemostasis

Young-Hoon Jeong, M.D., Ph.D.

Director, Clinical Trial Center, Gyeongsang National University Hospital; Associate Professor, Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Korea.

Disclosures

Research Grants/SupportOtsukaAccumetricsBoehringer-IngelheimHaemoneticsDong-A PharmaceuticalHan-Mi Pharmaceutical

Honoraria/Consulting Otsuka Sanofi-Aventis Daiichi Sankyo Inc Astrazeneca Nanosphere **Haemonetics** Han-Dok Pharmaceutical

Atherothrombosis: Clinical Manifestations

Acute coronary syndromes - STEMI - NSTEMI - Unstable angina Stable CAD Atrial Fibrillation Angioplasty Bare metal stent Drug eluting stent CABG

Abdominal aortic aneurysm (AAA)

Stroke TIA Intracranial stenosis

Carotid artery stenosis CEA Carotid stenting

Renal artery stenosis Renal artery stenting

Peripheral arterial disease Acute limb ischemia Claudication Amputation Endovascular stenting Peripheral bypass Abnormal ABI

Glycoprotein Ib/IX/V von Willebrand factor

Platelet Function Beyond Hemostasis

<u>Diverse roles</u>

- Promoting inflammatory and immune response
- Maintaining vascular integrity
- Contributing wound healing

Underlying mechanisms

- Recruit leukocytes and progenitor cells to the sites of vascular injury or thrombosis - Store, produce and release proinflammatory, anti-inflammatory and angiogenic factors and microparticles into the circulation - Spur thrombin generation

Disease entities related with platelets endothelial dysfunction, atherosclerosis, restenosis, LV remodeling, cancer, IBD, RA, SLE, psoriasis, sepsis, acute lung injury, transplantation rejection...

Platelet Granular and Secreted Molecules

α-Granules	Dense bodies	
Platelet-specific proteins	ADP	
Platelet factor 4	ATP	
β-Thromboglobulin family*	Calcium	
Multimerin	Serotonin	
Adhesive glycoproteins	Pyrophosphate	
Fibrinogen	GDP	
von Willebrand factor	Magnesium	
von Willebrand factor propeptide	Other secreted or released proteins	
Fibronectin	Protease nexin I	
Thrombospondin-1	Gas6	
Vitronectin	Amyloid β -protein precursor (protease nexin II)	
Coagulation factors	Tissue factor pathway inhibitor	
Factor V	Factor XIII	
Protein S	α_1 -Protease inhibitor	
Factor XI	Complement 1 inhibitor	
Mitogenic factors	High molecular weight kininogen	
Platelet-derived growth factor	α_2 -Macroglobulin	
Transforming growth factor-β	Vascular permeability factor	
Endothelial cell growth factor	Interleukin-1ß	
Epidermal growth factor	Histidine-rich glycoprotein	
Insulin-like growth factor I	Chemokines	
Angiogenic factors	MIP-Ia (CCL3)	
Vascular endothelial growth factor	RANTES (CCL5)	
Platelet factor 4 (inhibitor)	MCP-3 (CCL7)	
Fibrinolytic inhibitors	Gro-a (CXCL1)	
α_2 -Plasmin inhibitor	Platelet factor 4 (CXCL4)	
Plasminogen activator inhibitor-1	ENA-78 (CXCL5)	
Albumin	NAP-2 (CXCL7)	
Immunoglobulins	Interleukin-8 (CXCL8)	
Granule membrane-specific proteins	TARC (CCL17)	
P-selectin (CD62P)		
CD63 (LAMP-3)		

GMP 33

Endothelium-Platelet-Leukocyte Interaction

Smyth SS et al. J Thromb Haemost 2009;7:1759-66.

Libby P. J Inter Med 2008;263:517-27.

Relation: Platelet Physiology, Inflammation and Disease Activity

A distinct pathophysiological state of heightened platelet reactivity to ADP, platelet activation, inflammation and hypercoagulability, marks the development of symptomatic CV disease from chronic stable disease.

Prothrombotic State (Hypercoagulability)

Unstable Coronary Artery Disease

TRIP study. Tantry US, Gurbel PA et al. Platelets. 2010;21:360-7.

Anti-inflammatory & Vasoprotective Effects of P2Y₁₂ Receptor Inhibitors

Iyengar S, et al. J Thromb Thrombolysis 2009;27:300-6.

Platelet Function:

Platelet-Leukocyte Aggregates and Inflammation

Effect of Cilostazol on HS-CRP

Type 2 DM patients with PAOD (n = 192)

Hsieh, et al. *Circ J* 2009;73:948–954.

Clopidogrel on PLT Activation and Inflammation

Symptomatic CAD on Aspirin: 5-week Clopidogrel (n = 77) vs. Placebo (n = 26)

Heitzer T et al. ATVB 2006;26:1648-52.

Prasugrel vs. Clopidogrel on Platelet Activation

Stable CAD on Aspirin: 4-week Prasugrel (n = 55) vs. Clopidogrel (n = 55)

Braun OO et al. Thromb Hemost 2008;100:626-33.

Prasugrel vs. Clopidogrel on Coagulation Activation

Stable CAD on Aspirin: 4-week Prasugrel (n = 55) vs. Clopidogrel (n = 55)

Braun OO et al. Thromb Hemost 2008;100:626-33.

Relationship Between Inflammation and PFT

Stable CAD on Chronic DAPT (n = 1,223)

Bernlochner I et al. *Thromb Hemost* 2010;104:626-33.

Relationship Between Fibrinogen and PFT

Stable CAD on Chronic DAPT (n = 1,223)

Bernlochner I et al. Thromb Hemost 2010;104:626-33.

Platelet Function:

Endothelial Dysfunction and Atherosclerosis

Clopidogrel on Endothelial NO Bioavailability

Symptomatic CAD on Aspirin: 5-week Clopidogrel (n = 77) vs. Placebo (n = 26)

HD Clopidogrel on Endothelial NO Bioavailability

PCI-treated Patients: 75 mg vs. 150 mg Clopidogrel (n = 50, 30-day cross-over)

ARMYDA-150 mg. Patti G et al. JACC 2011;57:771-8.

Relationship btw Endothelial Dysfunction and HPR

PCI-treated Patients on Chronic DAPT (n = 103): HPR ≥ 230 PRU

RHI (Reactive Hyperemia Index): peripheral ED

Fujisue K et al. Circ CV Interv 2013;6:452-9.

Relationship Between Atheroma Burden and HPR

IVUS imaging in PCI-treated Patients (n = 335): PRU > 230 (32.5%)

* Adjustments for age, sex, DM, and CRF

Chirumamilla APet al. *JACC CV Imaging* 2012;5:540-9.

Platelet Function:

Post-injury or Post-stent Neointimal Hyperplasia

Leukocyte Migration Interacting With PLT-Fibrinogen Clot After Stenting

Inoue T et al. JACC CV Interv 2011;4:1057-66.

CYP2C19 SNP on Intra-stent Thrombi and TLR

Follow-up OCT imaging in DES-treated Patients on DAPT (n = 125)

Thrombelastography (TEG®) Hemostasis System

- Whole blood test
- Measures global hemostasis
 - From clot initiation to clot lysis
 - Net effect of components

Influence of HPR (LTA) and MA_{KH} (TEG) on MACE

PCI-treated Patients on DAPT (n = 197): 2-year F/U (MACE, 12.7%)

Ischemia-driven TVR: 76% of MACE

<u>"Platelet function or Clot strength</u>" is associated with post-injury neointimal hyperplasia

Jeong YH, et al. *Thromb Haemost* 2014;E-pub.

Sustained P2Y₁₂ Inhibition by Ticagrelor to Prevent Subsequent Neointima

Figure 6. Representative carotid artery neointima sections in C57BL/6 mice treated with vehicle alone (A), ticagrelor before injury only (B), ticagrelor postinjury only at 4 and 24 hours (C), and ticagrelor before injury and 4 hours postinjury (D).

Platelet Function:

Post-MI Left Ventricular Remodeling

Role of Platelets in Mediating Inflammatory Responses for Post-MI LV Remodeling

Platelet-Leukocyte Accumulation in Infarcted Myocardium (C57BL/6 mice)

Randomized treatment started 2 hrs after MI and lasted for 3 days

Low-dose clopidogrel: 15/5/5 mg/kg <u>vs.</u> High-dose clopidogrel: 50/15/15 mg/kg <u>vs.</u> Prasugrel: 5/5/5 mg/kg <u>vs.</u> PD (platelet depletion) by CD41 antibody

Liu Y, et al. ATVB 2011;31:834-41.

Role of Platelets in Mediating Inflammatory Responses for Post-MI LV Remodeling

Platelet-Leukocyte Accumulation in Infarcted Myocardium (C57BL/6 mice)

Liu Y, et al. *ATVB* 2011;31:834-41.

Novel Role of Platelet Reactivity and Inflammation in LV Remodeling Following STEMI

REMODELING Study: PPCI-treated STEMI Patients on DAPT (n = 150)

LV Remodeling: a relative >20% increase in LV EDV between baseline and 1-month F/U

Park Y, Jeong YH, et al. Unpublished.

Cross-talk btw Platelet Reactivity and Inflammation in LV Remodeling Following STEMI

REMODELING Study: PPCI-treated STEMI Patients on DAPT (n = 150)

Predictors of LV Remodeling

	1	p value	OR (95% CI)	
Age≥65 year old	—	0.145	2.73 (0.71, 10.50)	
Female.		0.259	2.08 (0.58, 7.41)	
Chronic kidney disease	— •	0.559	1.55 (0.36, 6.71)	
Anemia	— •—	0.367	1.72 (0.53, 5.62)	
PRU<248 and hs-CRP< 1.4 mg/L vs.	•			
PRU≥ 248 and hs-CRP < 1.4 mg/L		0.010	5.99 (1.54, 23.26)	
PRU< 248 and hs-CRP ≥ 1.4 mg/L		0.001	12.50 (2.72, 58.82)	
PRU ≥ 248 and hs-CRP ≥ 1.4 mg/L		< 0.001	14.08 (3.61, 55.56)	
LVID _{diastole} (per 1mm increment)	•	0.095	0.92 (0.83, 1.02)	
LVEDV index (per 1mL/m ² increment)	•	0.008	0.86 (0.77, 0.96)	
LVESV index (per 1mL/m ² increment)	•	0.029	0.84 (0.73, 0.98)	
Post-PCI slow flow (TIMI flow 2)		0.170	3.06 (0.62, 15.11)	
	<u></u>	00		
Odds ratio				

Park Y, Jeong YH, et al. Unpublished.

Platelet Function in CV Disorder

Key roles in "Atherothrombosis"

- "Platelet activation & aggregation" are related w/ hemostasis and thrombosis endothelial dysfunction and atherosclerosis inflammatory cascade vascular, post-stent and myocardial repair...

 "Antiplatelet therapy" has potentials to prevent and control athero-thrombosis through multidisciplinary pathways.

Risk-Benefit Balance in Antiplatelet Therapy

Thanks for your attention

Si