Issues on Design of Clinical Trials

Jimin Choi, PhD Managing director, ACE Statistical Consulting & Adjunct professor, Dong-A University

Outline

- Why do clinical trials?
- Types of hypotheses
- Design of clinical trials
- Sample size & power considerations
- How do we minimize bias?
- Concluding remark

Why do clinical trial?

Why do clinical trials?

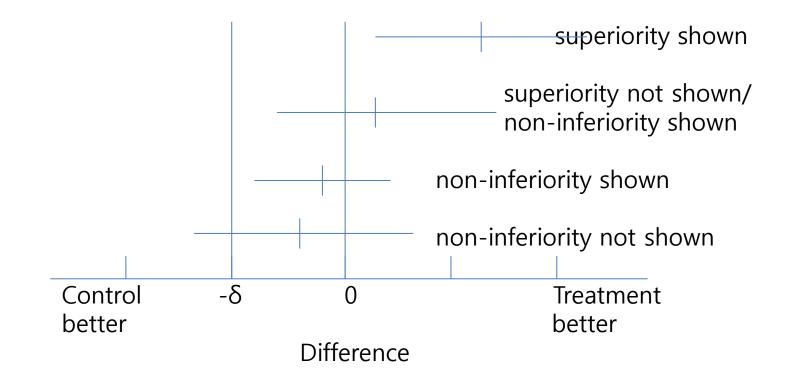
- To answer a clinical problem
- To gain new knowledge about a new or established treatment
- To support a "claim"
- For gaining government regulatory approval
- For marketing a drug, device, or technique

Why do clinical trial?

Principles of clinical trials

- Ethics
- Scientific validity and integrity

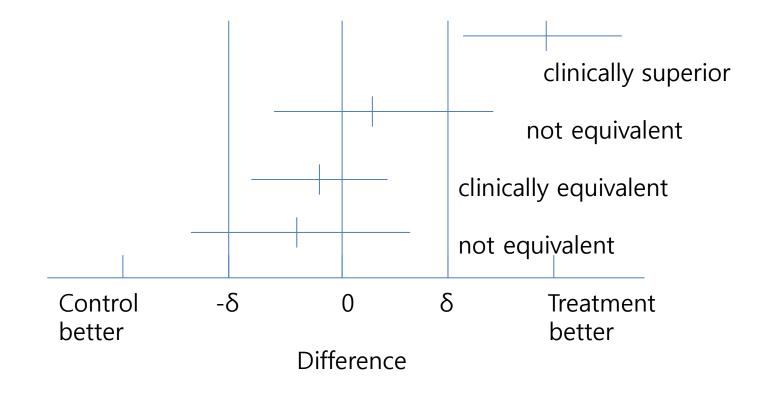
Why do clinical trial?


What is step one?

- Start with a hypothesis
- Must be in the form of a statement
- The question must be "answerable"
- Choose the outcome you wish to measure

Types of hypotheses

Types of hypotheses


Superiority Non-inferiority Equivalence

Types of hypotheses

Types of hypotheses

Superiority Non-inferiority Equivalence

Types of hypotheses

Non-Inferiority Challenges

- Requires high quality trial
- Treatment margin somewhat arbitrary

Commonly used designs

- Parallel design
- Factorial design
- Cross-over design
- Group sequential design

etc

Parallel Design

↓ ↓ Randomize -Trt B

• H₀: A vs. B

Screen

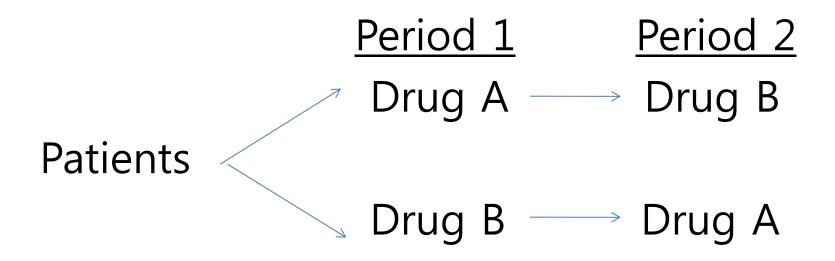
- Advantage
 - Simple, General Use
 - Valid Comparison
- Disadvantage
 - Few Questions/Study

Factorial Design

• <u>Schema</u>

	Factor I		
	Placebo	Trt B	
Placebo	N/4	N/4	A vs. Placebo
Trt A	N/4	N/4	
		Placebo Placebo N/4	Placebo Trt B Placebo N/4

B vs. Placebo


Factorial Design

- Advantages
 - Two studies for one
 - Discover interactions
- Disadvantages
 - Test of main effect assumes no interaction
 - Often inadequate power to test for interaction
 - Compliance
- Examples
 - Physicians' Health Study (PHS) *NEJM* 321(3):129-135, 1989.
 - Final report on the aspirin component
 - Canadian Cooperative Stroke Study (1978) NEJM p. 53

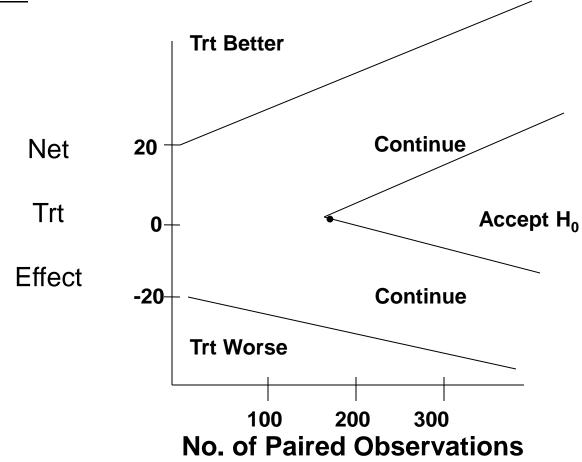
Crossover Design

- Each patient receives both treatments.
- Order of treatment is randomized.
- Comparison is "within" patients not "between" patients.

Crossover Design

Crossover Design

Patients must complete both arms. Drug must be short acting.


- Advantages:
 - Sample size reduced.
 - Allows a preference question
- Disadvantages:
 - Possible carry-over effect
 - Possible period effect (time)

Sequential Design

- Continue to randomize subjects until H₀ is either rejected or "accepted"
- A large statistical literature for classical sequential designs
- Developed for industrial setting
- Modified for clinical trials (e.g. Armitage 1975, Sequential Medical Trials)

Classical Sequential Design

- Continue to randomize subjects until H₀ is either rejected or "accepted"
- <u>Classic</u>

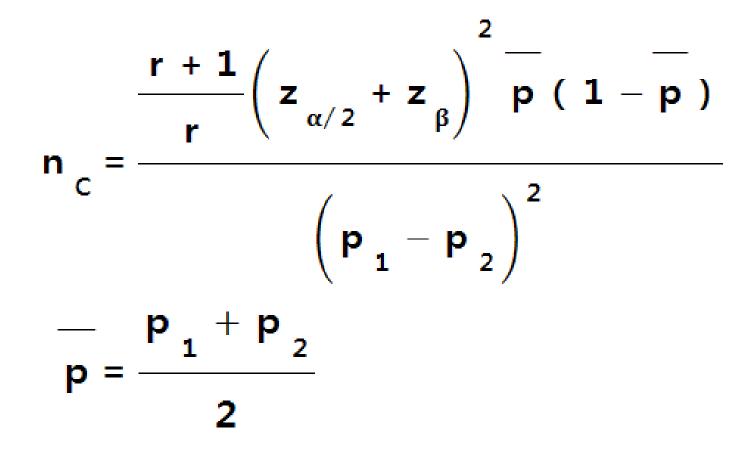
What is minimum number of patients to conduct a clinical trial?

• Sample size & power calculation

Primary objective & primary endpoint

Definition of primary objective & primary endpoint is required.

Primary endpoint	Test method	
Categorical data	Chi square test	
Continuous data	T test/ ANOVA	
Survival data	Log rank test	


Sample size calculation (1)

 $P_{c} = 0.5$ $P_{T} = 0.65$

$P_{T} - P_{C} = 0.15$

What is the required number of patients to detect 15% improvement of response rate ?

Sample size calculation (2) $n_c = r n_T$

Sample size calculation (3)

Response rate					
Effect size	Group 1	Group 2	Alpha	Power	n per group
15%	50%	65%	0.05	80%	170
15%	50%	65%	0.01	80%	253
10%	50%	60%	0.05	45%	170
5%	50%	55%	0.05	14%	170
10%	50%	60%	0.05	80%	388
5%	50%	55%	0.05	80%	1,565
10%	50%	60%	0.05	90%	519
5%	50%	55%	0.05	90%	2,095
10%	80%	90%	0.05	90%	266
5%	80%	85%	0.05	90%	1,212

Sample size calculation (4)

Change	Sample size
alpha (type I error rate) \downarrow	1
Power 1	1
Effect size ↑	\downarrow
Effect size ↓	1
Proportion near to 50%	1

How do we minimize bias?

What is a clinical trial's greatest enemy?

• Bias

How do we minimize bias?

How do we minimize bias?

- Make sure groups are equivalent
- => Randomization
- Standardize outcome assessment
- => Blinding
- Unbiased data analysis
- => ITT principle

Concluding remark

Concluding remark

It is highly recommended to co-work with biostatistician from the early stage of planning clinical trials.

Thank you for your attention.