Progress in Atherosclerosis Research-Impact on Treatments and Biomarkers

Department of Cardiology Nagoya University School of Medicine

Xian Wu Cheng MD, PhD

Disclosures (None)

December 9, 2011

Angiotensin type 1 receptor (AT1R) antagonism on atherosclerosis-associated vasa vasorum.

Identification of new biomarker for atherosclerosis-based coronary artery disease (CAD).

Atherosclerotic plaque growth and rupture

Atherosclerotic plaque and vasa vasorum

Stable

Vulnerable

TLR: toll-like receptor; EPC: endothelial progenitor cell; CXCR4, CXC chemokine receptor SDF-1: stromal cell-derived factor-1; MMP: matrix metalloproteinase

Aging reduces MMP-2 expression and EPC recruitment in response to ischemia

§ P < 0.01, † P < 0.01
vs. corresponding controls</pre>

Cheng XW Murohara T et al. Circ Res 2007; CEPP 2010

MMP-2 deficiency impairs exercise-induced neovascularization in advanced age

•P < 0.05 vs. corresponding controls•N.S.: no significant difference

Cheng XW Murohara T et al. Circulation 2010

AT1R: angiotensin II type 1 receptor; MCP-1: macrophage chemoattractant protein-1; PI3K: phosphatidylinositol 3-

 To investigate the protective effects and the mechanism of action of angiotensin II type 1 receptor antagonism therapy on atherosclerotic plaque growth and instability in apolipoprotein E -deficient (ApoE^{-/-}) mice with a special focus on plaque neovescularization.

Exp: Protocol (1): Early atherosclerotic lesion formation

ApoE^{_/_} mice (*n* = 26)

High fat diet (12 weeks)

0.5% Carboxymethyl cellulose (CMC, CONT)
 Olmesartan (1 mg/kg/d: OLM)

Sampling procedure

Aortic sinus Thoracic Abdominal

Microscopy images show whole aortas of ApoE^{-/-} mice treated with or without olmesartan

CONTROL

OLMESARTAN

Olmesartan inhibits atherosclerotic lesion formation

Control

Olmesartan

OLM treatment reduces neovessel in the atherosclerotic plaques of ApoE^{-/-} mice

Cheng XW Murohara T, et al. Hypertension 2011

OIM inhibits macrophage infiltration and inflammatory chemokine expressions

OLM inhibits targeted gene expressions in atherosclerotic plaques

AR, aortic root; TA, thoracic aorta; AA, abdominal aorta; TLR, toll-like receptor SDF-1, stromal-derived factor-1; CXCR4, CXC chemokine receptor

Localization of MMP-2/-9 in macrophages and SMCs of atherogenic plaques

OLM inhibits aorta-ring angiogenic action

OLM inhibits the levels of MMP-2/-9 mRNAs in bone marrow-derived EPCs

EPC identification

Exp: Protocol (2)

MMP-2 deficiency reduced fat accumulation around aortas in ApoE^{-/-} mice

MMP-2 deficiency reduces atherosclerotic plaques and neovessel formation

OLM inhibits Ang II-induced MMP expression via TRL signaling pathway in HUVECs

HUVEC, human umbilical vein endothelial cell; **Ang II**, angiotensin II; **LY** LY294002, PI3K inhibitor; **U1024**, extracellular signal-regulated kinase inhibitor **AG490**, janus kinase/sinal transducer and activator of transcription 3 inhibitor.

Olmesartan lessened the levels of TLR2/4 and SDF-1/CXCR4 genes and MMP-2/-9 protein and activity in the atherosclerotic plaques.

Olmesartan reduced diet-induced atherosclerotic plaque neovessel density and plaque instability in Apo E^{-/-} mice.

Proposed mechanisms

Cheng XW, Murohara T. Hypertension 2011

<u>Conclusion</u>

Our findings suggest that olmesartan exerts inhibitory effect on TLR2-mediated MMP-2/-9 expression and activity and angiogenic action, leading to the enhancement of atherogenic plaque stability and protection of its disruption in *ApoE*^{-/-} mouse model without lipid lowing effect.

Exercise rescues vascular action in response to hypoxia in aged animals and humans.

Identification of new biomarker for atherosclerosis-based coronary artery disease (CAD).

The properties of cysteine protease: cathepsins (Cats)

- Cats generally known as functioned in lysosomes, were discovered in the half of the 20th century. There are 11 human Cats (B,C,F,H,K,L,O,S,V,W,and X) that belong to papain subfamily of cysteinyl proteases. Cystatin C (CystC) is one of the major endogenous inhibitor o cathepsins.
- Previously, we have reported that CatK, which is one of the most potent mammalian collagenase, was overexpressed in the failing myocardium of humans and rats with hypertension.

CatK expression in the balloon-injured carotid artery and failing myocardium of rat

Rat

Cheng XW, et al. Am J Path 2004, 2006, 2008; Hypertension 2006.

Illustration of cathepsin function in pathogenesis of atherosclerosis-based vascular disease and its implications

December 2011

(next issue online December 14)

Cysteine Protease Cathepsins in Atherosclerosis-Based Vascular Disease and Its Complications. Full Text | PDF

Cheng XW and Murohara T Hypertension 2011.

 Circulating CatK levels might represent a novel marker of patients with CAD predict potential atherosclerotic plaque.

257 CAD vs 100 controls

(admitted for scheduled RFCA between Mar. 2009 - Dec. 2010)

<u>Definition</u>

Coronary angiography (at least one major artery 50% > stenosis)

<u>Exclusion criteria</u>

- Dilated or hypertrophic cardiomyopathy
- Congenital heart disease
- Congestive heart failure

- Valvular heart diseases
- Renal failure on hemodialysis

Methods

Laboratory measurements

- CatK, CystC
- Intact procollagen type I N-terminal propeptide (I-PINP), Carboxyterminal telopeptide of collagen type I (ICTP, either as an index of collagen synthesis or degradation, respectively)
- High-sensitivity C-reactive protein (hs-CRP)
- Interleukin (IL)-1β level

Echocardiography

- Left atrial (LA) dimension
- Left ventricular ejection fraction (LVEF)

CAD study

Patients Characteristics

	CAD (-)	CAD (+)	n
	(n=100)	(n=257)	ρ
Age (yrs)	60.1 ± 5.08	62.8±6.96	N.S.
Male (%)	61	67.5	N.S.
BMI	23.5 ± 2.42	24.3 ± 5.21	N.S.
HT (%)	16.0	30.2	***
DM (%)	13.0	57.5	***
Smoker (%)	29.0%	28.3	N.S.
LDL (mg/dl)	101.2 ± 25.6	123.0 ± 27.6	***
Statins (%)	8.0	35.2	***
ARBs (%)	5.0	24.5	***
CCB (%)	7.0	29.1	***
ACEI (%)	3.0	7.5	***
Insulin (%)	0.0	25.1%	***

BMI, body mass index; HT, Hypertension; DM, diabetes mellitus; LDL, low-density lipoproteins; ARB, angiotensin II receptor blocker; CCB, calcium channel blocker; ACEI, angiotensin-converting enzyme inhibitor.

The levels of serum Cat K, ICTP, I-PINP, and IL-1β in CAD and non-CAD patients

ICTP: linked carboxy-terminal telopeptide of collagen type I I-PINP: intact procollagen type I N-terminal propeptide

****P* < 0.001, vs CAD(-)

The correlations of circulating Cat K and ICTP and ICTP/I-PINP

Representative images of serial conventional and integrated backscatter (IB) intravascular images

Serum Cat K: 156 pg/ml)

Serum Cat K: 72 pg/ml)

Green: fibrous volume

- Blue : lipid volume
- **Red** : Calcification: red

IVUS analysis shows that the correlations of serum Cat K and plaque and fibrous volumes in CAD patients

> *P* = 0.04116, r= 0.2387, Y=48.8731+1.08591x, n=58

Plaque fibrous volume (%)

Receiver Operator Characteristic (ROC) curve for logistic regression models

The levels of Cat K, collagen, and elastin in the aortic plaques of mice

PSR: picrosirous red staining for collagen EVG: elastica van Gieson staining for elastin

Cheng XW et al. (2011 AHA in Orlando: unpublished data)

- Patients with CAD had significantly higher plasma CatK levels as well as IL-1β and ICTP levels than control subjects.
- Plasma CatK levels were correlated positively with ICTP, and IL-1β.

Stepwise Logistic regression analysis revealed that, among age, gender, CatK, and collagen markers, CatK, and I-PINP/ICTP ratio were independently associated with CAD.

Cat expressions in cardiovascular and valve cells

Cheng XW, Murohara T (Review) Circulation 2011

Proposed mechanisms underlying the regulation of CatK expression and releasing in atrium with AF

Mito = mitochondria; ER = endoplasmic reticulum Xao = xanthine oxidase Cheng XV

Cheng XW, Murohara T (Review) Circulation 2011 (accept)

These finding suggest that serum CatK levels represent a novel marker of patients with CAD and predict potential atherosclerotic plaque.

Collaborative Researchers Harvard University Nagoya University Hamamatsu University

Takeshi Sasaki

<u>Guo-Ping Shi</u> Michigan University

Masafumi Kuzuya

Circ Res 2003, 2007; AJP 2004, 2006, 2008; Hypertension 2006, 2011; JCVP 2009; J Hyperten 2010 (2); Circulation 2010.

PPAR-y and mesenteric artery aneurysm (on going)

Peter Libby

Zhao X et al. YMJ 2011 <u>Yanbian University</u>

Acknowledgments

<u>Nagoya University</u>

Cardiology

Cardiovascular Research Geriatrics Medicine

Michitaka Tsuzuki Toyoaki Murohara Haizhen Song Kenji Okumura Aiko Inoue Lina Hu Kae Nakamura Wazuko Adachi Masafumi Kuzuya

<u>Hamamatsu University</u>

Anatomy and Neuroscience Takeshi Sasaki