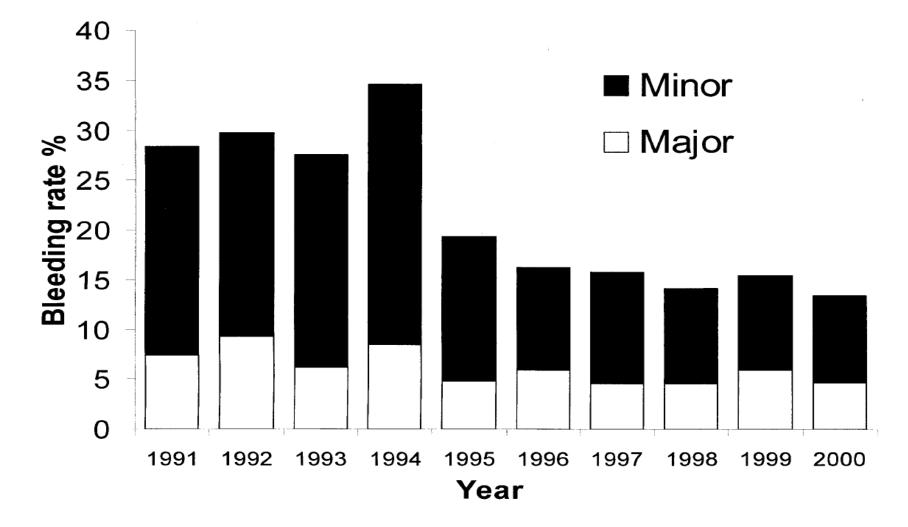
Can Radial Approach Reduces PCI Hard Events?


Y. Louvard, ICPS, Massy, Quincy, France

Busan, Korea, december 8-9, 2011

Approach related vascular complications: the major concern in modern PCI

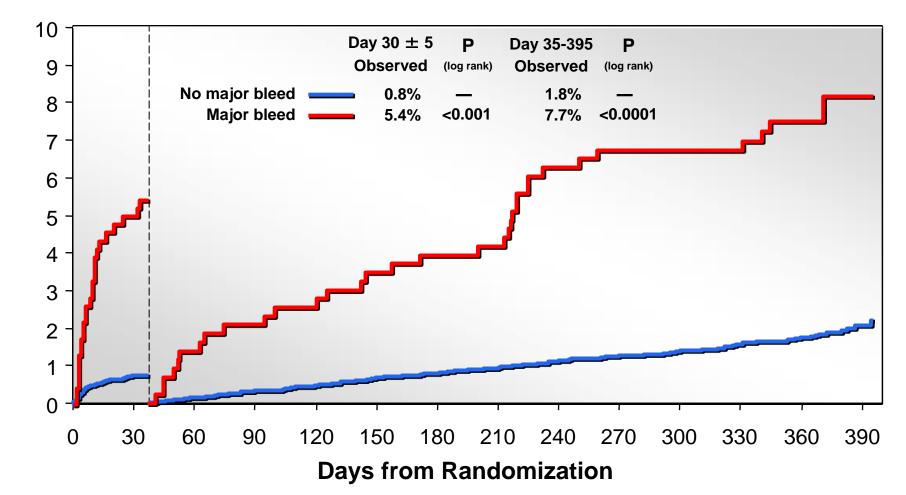
Rates of Bleeding in PCI Washington Hospital Center (N=10,974)

www.icps.com.fr

Kinnaird TD et al. Am J Cardiol 2003;92:930-935.

Predictors of Major Bleeding in PCI The REPLACE-2 Trial (N=6,010)

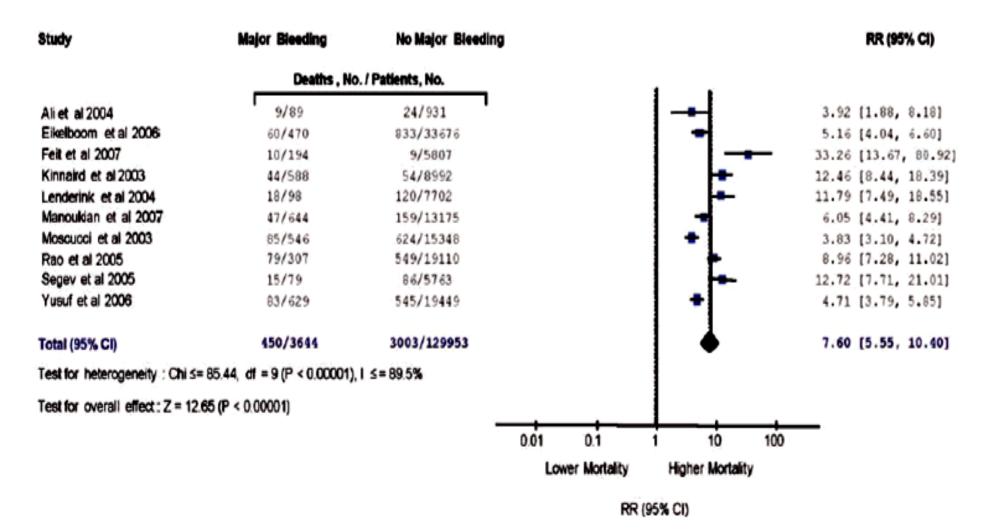
Variable	OR	95% CI	p-value
Baseline risk factors			
Age ≥ 75	1.482	1.01, 2.18	0.045
Gender (Female)	1.535	1.12, 1.10	0.007
Creatinine Clearance	1.008	1.00, 1.01	0.006
Anemia	1.403	1.02, 1.94	0.040
Prior Angina	1.589	1.08, 2.35	0.02
Prior PCI	0.629	0.45, 0.88	0.007
Prior Thienopyridine	0.601	0.39, 0.93	0.023
Peri-procedural risk factors			
Treatment Group (Heparin + GPI vs. bivalirudin)	1.969	1.37, 2.84	0.0003
Provisional GPI received	2.679	1.59, 4.51	0.0002
Procedure Duration >1h	2.049	1.22, 3.45	0.007
Time to Sheath Removal >6h	1.614	1.06, 2.45	0.024
Intensive Care Unit stay (days)	1.25	1.18, 1.32	<0.0001
Intra-aortic Balloon Pump	8.705	3.43, 22.07	<0.0001
Major Blooding (C	Warall 2 20/	1	


Major Bleeding (Overall 3.2%)

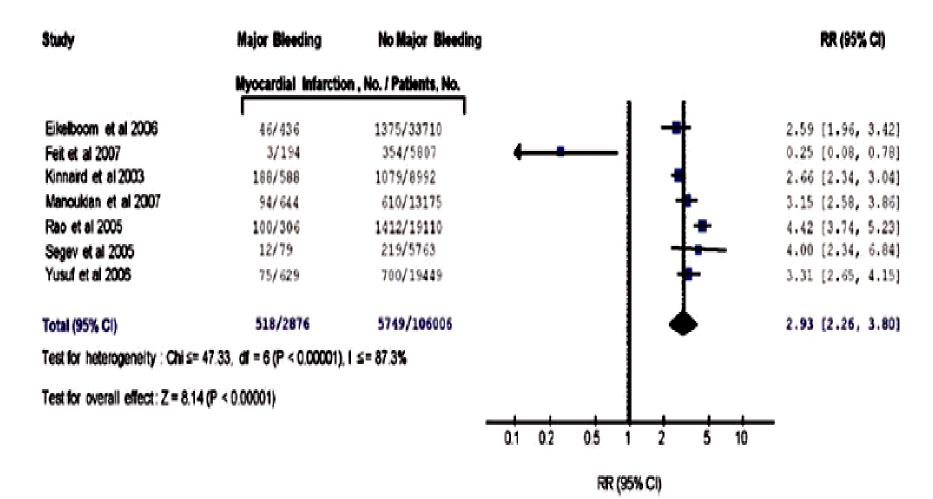
www.icps.com.fr

Feit F, Unpublished.

ACUITY PCI: Major Bleeding

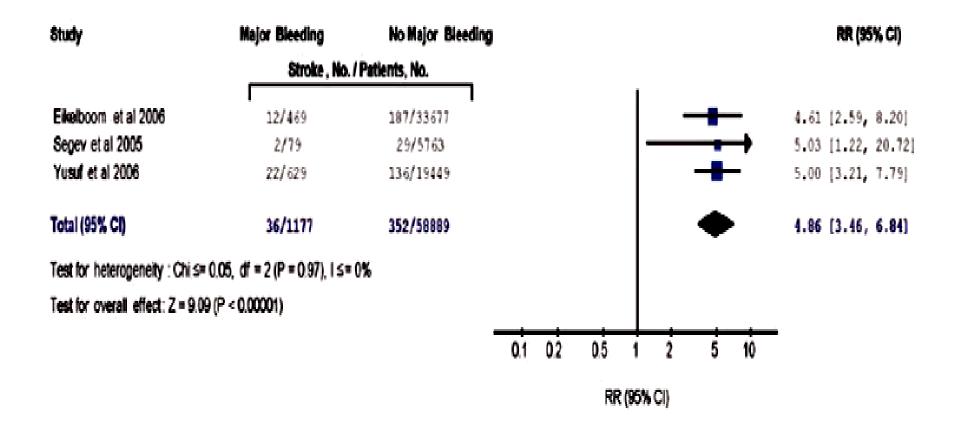

Long-Term (1-Year) Mortality Landmark Analysis

Mortality (%)


Manoukian SV et al. TCT 2007.

Pooled relative risk of mortality increase in patients with ACS and major bleeding

M. Hamon, EuroIntervention. 2007 Nov;3(3):400-8.


Pooled relative risk of MI increase in patients with ACS and major bleeding

www.icps.com.fr

M. Hamon, EuroIntervention. 2007 Nov;3(3):400-8.

Pooled relative risk of stroke increase in patients with ACS and major bleeding

www.icps.com.fr

M. Hamon, EuroIntervention. 2007 Nov;3(3):400-8.

Transradial approach for diagnosis and PCI nearly abolishes the vascular complications

W INSTITUT CARDIOVASCULAIRE PARIS SUD Radial vs femoral access for coronary angiography or intervention: meta-analysis of RCTs

Major bleeding

Study name

Peto odds ratio and 95% Cl

			Peto
	Radial	Fernoral	odds ratio
ACCESS	0/300	4/300	0.13
Achenbach	0/152	4/155	0.14
Bodi	3/666	7/332	0.19
BRAFE	0/50	1/55	0.15
FARMI	3/57	3/57	1.00
Gorge	1/214	1/216	1.01
Mann 1998	0/68	2177	0.15
OCTOPLUS	1/192	7/185	0.21
OUTCLAS	0/322	1/322	0.14
RADIAL AMI	1/25	4/25	0.27
RADIAMI	3/50	7/50	0.41
TEMPURA	0/77	2172	0.12
Vazquez-Rodriguez	1/217	5/222	0.27
	13/2390	48/2068	0.27

OR 0.27 (95% CI 0.16, 0.45) P < .001

www.icps.com.fr

Jolly Am Heart J 2009;157:132-40

10

Favours Radial Favours Femoral

100

0.01

0.1

Radial vs femoral access for coronary angiography or intervention:meta-analysis of randomized trials

Sub-group analysis for major bleeding by clinical characteristics of studies

Subgroup	No. of studies (no. of patients)	OR (95% CI)	P
	2 (40 A)		.003
Mean age > 70	2 (684)	0.18 (0.06, 0.57)	
Mean age < 70	16 (4807)	0.30 (0.17, 0.53)	<.001
Radial expert	12 (4531)	0.23 (0.13, 0.42)	<.001
Non-radial expert	6 (960)	0.39 (0.15, 1.01)	.05
Diagnostic-only studies	3 (1030)	1.01 (0.06, 16.2)	1.0
Intervention studies	15 (4461)	0.25 (0.15, 0.43)	<.001
Primary or rescue PCI	5 (852)	0.39 (0.18, 0.82)	.013
Closure device studies	4 (1101)	0.21 (0.09, 0.49)	<.001
Unpublished	5 (2274)	0.28 (0.13, 0.56)	<.001
Published	13 (3217)	0.26 (0.12, 0.54)	<.001
Modern era	10 (3608)	0.29 (0.17, 0.50)	<.001
(1999-present)			

www.icps.com.fr

Jolly Am Heart J 2009;157:132-40

TRA vs. TFA for PCI in AMI. A Meta-Analysis

Major bleeding

	Transra	dial	Transfer	noral		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
TEMPURA	0	77	2	72	5.8%	0.18 (0.01, 3.85)	2003	
Valsecchi O	0	163	7	563	7.7%	0.23 [0.01, 3.99]	2003	
Philippe F.	0	64	3	55	8.5%	0.12 [0.01, 2.30]	2004	
Kassam S	3	47	12	64	21.7%	0.30 [0.08, 1.11]	2004	
Díaz de la Llera LS	0	103	2	59	7.2%	0.11 [0.01, 2.35]	2004	——————————————————————————————————————
Kim JY	2	220	7	132	19.7%	0.16 (0.03, 0.80)	2005	
RADIAL-AMI	0	25	0	25		Not estimable	2005	
FARMI	3	57	3	57	6.5%	1.00 (0.19, 5.18)	2007	
RADIAMI	3	50	7	50	15.0%	0.39 (0.10, 1.61)	2007	
Cruden NL	0	44	2	243	1.8%	1.09 (0.05, 22.99)	2007	
Hetherington SL	0	571	2	480	6.2%	0.17 (0.01, 3.50)	2009	
Total (95% CI)		1421		1800	100.0%	0.30 [0.16, 0.55]		•
Total events	11		47					
Heterogeneity: Chi ² =	4.53, df =	9 (P =	0.87); I ² = ()%				0.005 0.1 1 10 200
Test for overall effect:	Z = 3.89 (P = 0.0	001)					Favours radial Favours femoral

www.icps.com.fr

Vorobcsuk A, Am Heart J. 2009 Nov;158(5):814-21

Increased Risk of Complications with a Transradial Approach: SCAAR registry

(30 centers)(2000-2004)

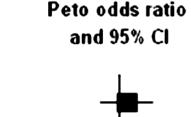
n	Transradial 7962	Transfemoral 48682	р
% PCI (%)	44	41	
Age (years)	64.4±10.5	65.2±10.9	
Female gender (%)	27.1	33.0	
Previous CABG (%)	5.4	12.0	
ST+ MI (%)	2.8	8.9	
Left main/3 vessel disease (%)	24.0	30.3	
Complications overall (%)	5.7	4.6	<0.001
Neurological complications (%)	0.4	0.2	0.007
Myocardial infarctions (%)	1.0	0.5	<0.001
Bleedings at the access site (%)	1.1	1.5	

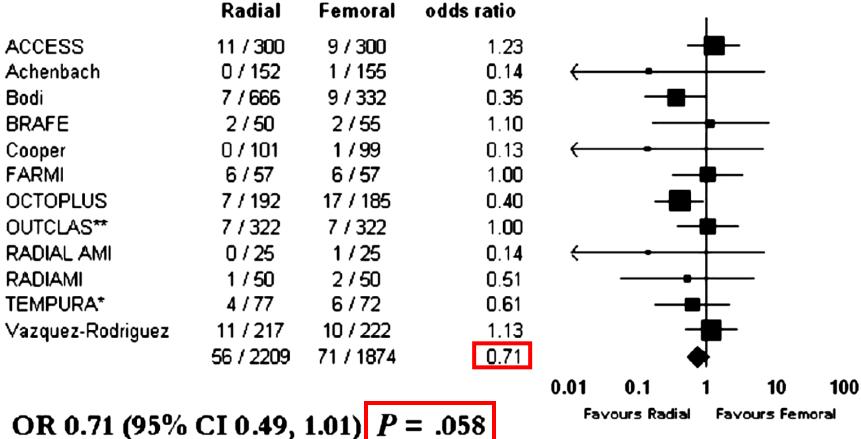
Lagerqvist, ESC 2004

TIA or stroke during PCI: is the radial route a risk factor ? Results from 2 large nationwide registries in France

N= 4820	%	р
Female vs male	0.79 / 0.19	.003
Previous stroke or TIA (yes / no)	1.19 / 0.26	.01
EF <40% (yes / no)	1.04 / 0.14	.003
Stable / non ST + ACS / ST + ACS	0.09 / 0.40 / 0.61	.03
Sheath size (5F / 6F / 7F)	0.24 / 0.20 / 1.19	.204
Femoral / Radial route	0.39 / 0.19	.208

D. Blanchard PACIFIC and FAR registries ESC 2007


Does radial approach reduces the mortality of interventional cardiology ?


VINSTITUT CARDIOVASCULAIRE PARIS SUD Radial vs femoral access for coronary angiography or intervention:meta-analysis of RCTs

Death, MI or Stroke

Peto

Study name

www.icps.com.fr

Jolly Am Heart J 2009;157:132-40

Radial vs femoral access for coronary angiography or intervention:meta-analysis of RCTs

Death

<u>Study name</u>	idy name Dead / Total					Peto odds ratio			
	Radial	Femoral	Peto odds ratio		ar	nd 95% Cl I			
ACCESS	1/300	0/300	7.39				•	>	
Bodi	1/666	2/332	0.22						
FARMI	3/57	3/57	1.00		_	_∎	-		
OCTOPLUS	2/192	3/185	0.64		-	╼┼──			
OUTCLAS	3/322	2/322	1.50		_				
RADIAL AMI	0/25	1/25	0.14	←			_		
RADIAMI	0/50	1/50	0.14	\leftarrow			_		
TEMPURA	4177	7172	0.52			∎┼			
Vazquez-Rodriguez	8/217	9/222	0.91		-				
	22/1906	28/1565	0.74			\blacklozenge			
				0.01	0.1	1	10	100	

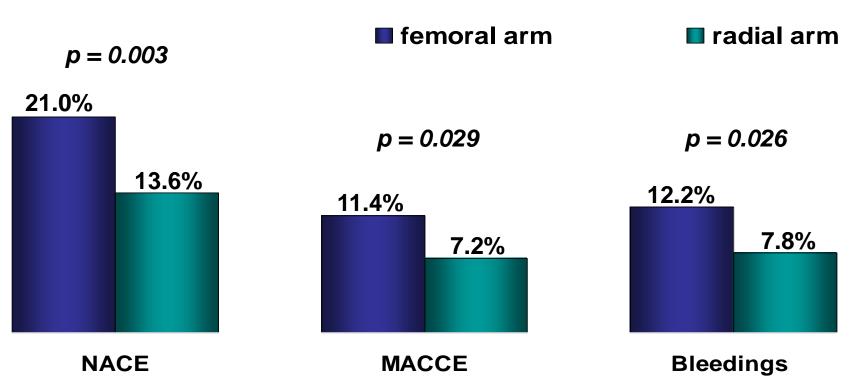
OR 0.74 (95% CI 0.42, 1.30) P = .29

Jolly Am Heart J 2009;157:132-40

Favours Femoral

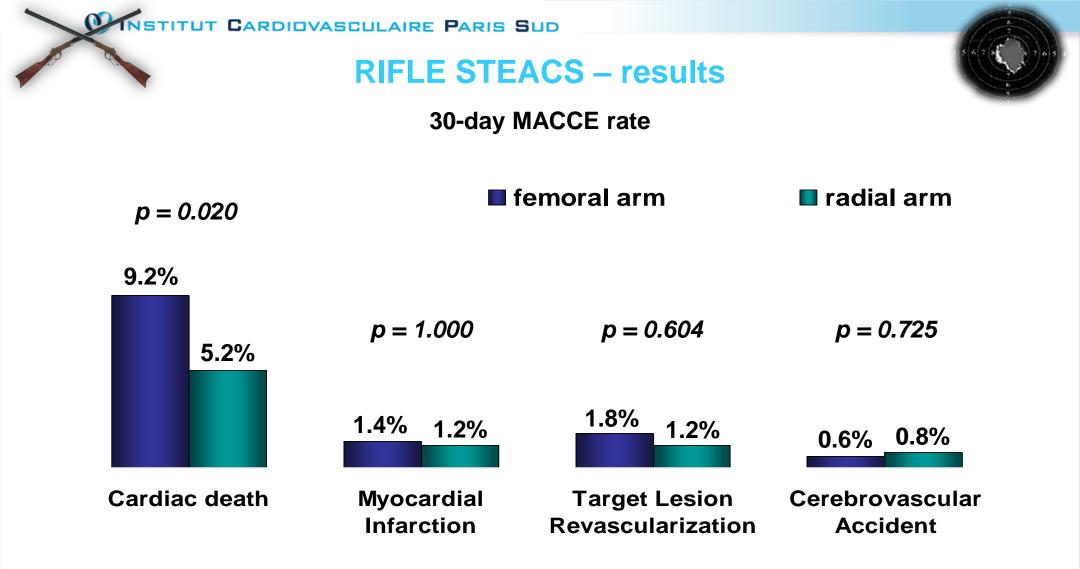
Favours Radial

TRA vs. TFA for PCI in AMI. A Meta-Analysis


Death

	Transra	dial	Transfer	noral		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
TEMPURA	4	77	6	72	12.0%	0.60 [0.16, 2.23]	2003	
Valsecchi O	1	163	10	563	9.1%	0.34 [0.04, 2.69]	2003	- _
Philippe F.	0	64	0	55		Not estimable	2004	
Kassam S	1	47	3	64	5.1%	0.44 [0.04, 4.39]	2004	
Díaz de la Llera LS	4	103	3	59	7.5%	0.75 [0.16, 3.49]	2004	
Kim JY	8	220	9	132	22.2%	0.52 (0.19, 1.37)	2005	
RADIAL-AMI	0	25	1	25	3.0%	0.32 [0.01, 8.25]	2005	
Cruden NL	1	44	6	243	3.7%	0.92 [0.11, 7.82]	2007	
FARMI	3	57	3	57	5.8%	1.00 [0.19, 5.18]	2007	
RADIAMI	0	50	1	50	3.0%	0.33 [0.01, 8.21]	2007	
Hetherington SL	7	571	13	480	28.5%	0.45 (0.18, 1.13)	2009	
Total (95% CI)		1421		1800	100.0%	0.54 [0.33, 0.86]		•
Total events Heterogeneity: Chi² = Test for overall effect:				0%				0.01 0.1 1 10 100 Favours radial Favours femoral

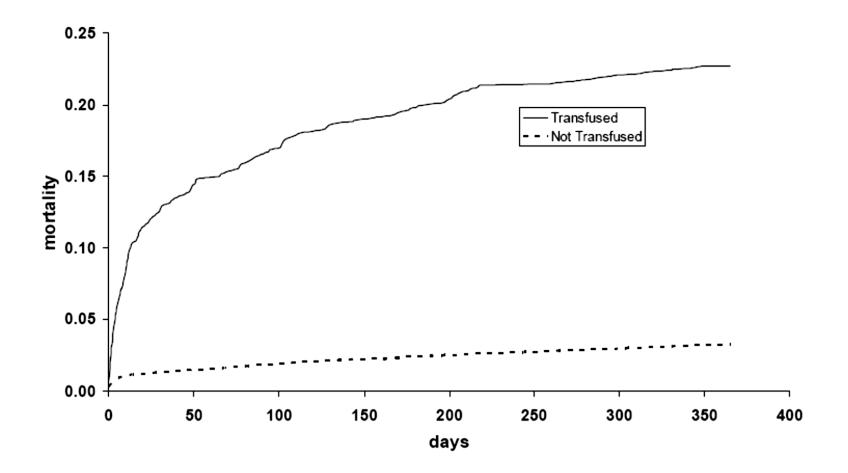
Vorobcsuk A, Am Heart J. 2009 Nov;158(5):814-21


RIFLE STEACS – results

30-day NACE rate

- Net Adverse Clinical Event (NACE) = MACCE + bleeding
- Major Adverse Cardiac and Cerebrovascular event (*MACCE*) = composite of cardiac death, myocardial infarction, target lesion revascularization, stroke

Romagnoli TCT 2011


The M.O.R.T.A.L Study: (Mortality benefit of Reduced Transfusion After PCI via the Arm or Leg)

Methods: data linkage

- The British Columbia Cardiac Registry PCI patients in BC 1999-2005 demographics & procedure details
- The Central Transfusion Registry (CTR) will cross reference packed red cells transfusion by medical records number (PHN) within a window of 9 days after PCI excluding CABG
- The BC Vital Statistics status; alive or dead at 30 days, 1 year post PCI.

The M.O.R.T.A.L Study: (Mortality benefit of Reduced Transfusion After PCI via the Arm or Leg)

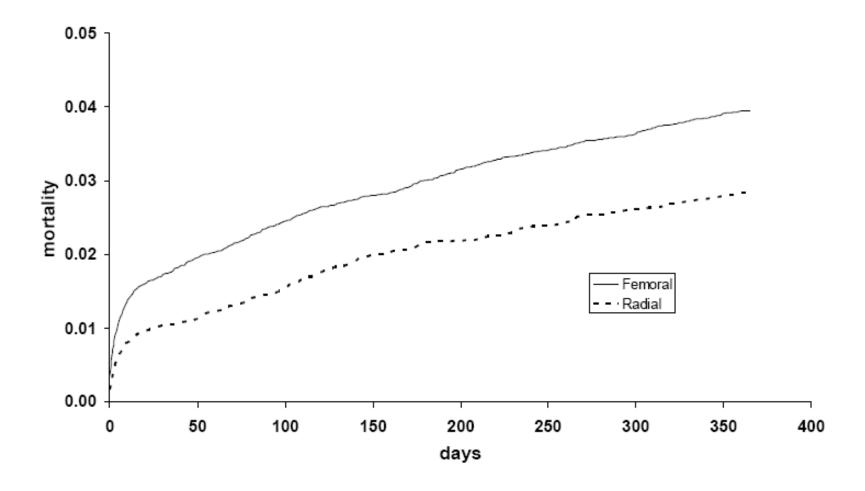
Unadjusted Kaplan-Meier Curves for Transfusion Status

Chase Heart online 10 Mar 2008

www.icps.com.fr

The M.O.R.T.A.L Study: (Mortality benefit of Reduced Transfusion After PCI via the Arm or Leg)

Adjusted Odds Ratios for 1 Year Mortality


		I	OR (95% CI)	p value
age > 75			2.75(2.45-3.09)	<0.001
low BMI		_ e	2.40(1.79-3.24)	<0.001
male sex	-	•	1.01(0.89-1.14)	ns
prev CVD			1.71(0.46-2.01)	<0.001
diabetes		-	1.42(1.26-1.60)	<0.001
prev CABG		+	1.35(1.16-1.57)	<0.001
prev MI		+	1.52(1.35-1.71)	<0.001
urgent PCI			3.15(2.77-3.58)	<0.001
stable angina	•		0.42(0.33-0.55)	<0.001
↑ creatinine			2.04(1.82-2.28)	<0.001
radial access	+		0.83(0.71-0.98)	<0.001
transfusion		e	3.58(2.94-4.36)	<0.001
prev pul disease			2.01(1.73-2.33)	<0.001
prev malignancy		-	1.64(1.38-1.96)	<0.001
	0	1 2 3 4	56	
		Odds ratio		

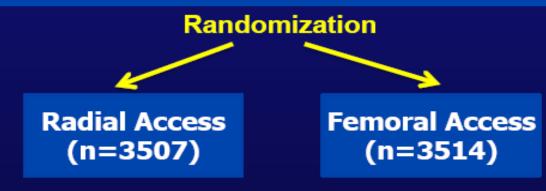
www.icps.com.fr

Chase Heart online 10 Mar 2008

W INSTITUT CARDIDVASCULAIRE PARIS SUD The M.O.R.T.A.L Study: (Mortality benefit of Reduced Transfusion After PCI via the Arm or Leg)

Unadjusted Kaplan-Meier Curves for Radial versus Femoral

Chase Heart online 10 Mar 2008


www.icps.com.fr

RIVAL Study Design

NSTE-ACS and STEMI (n=7021)

Key Inclusion:

- Intact dual circulation of hand required
- Interventionalist experienced with both (minimum 50 radial procedures in last year)

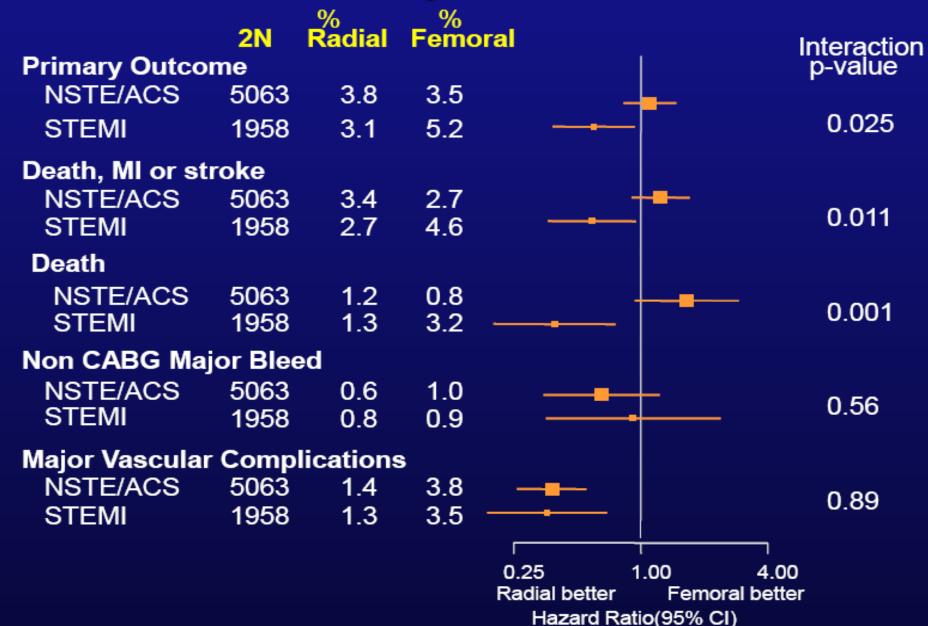
Blinded Adjudication of Outcomes

Primary Outcome: Death, MI, stroke or non-CABG-related Major Bleeding at 30 days

Jolly SS et al. Am Heart J. 2011;161:254-60.

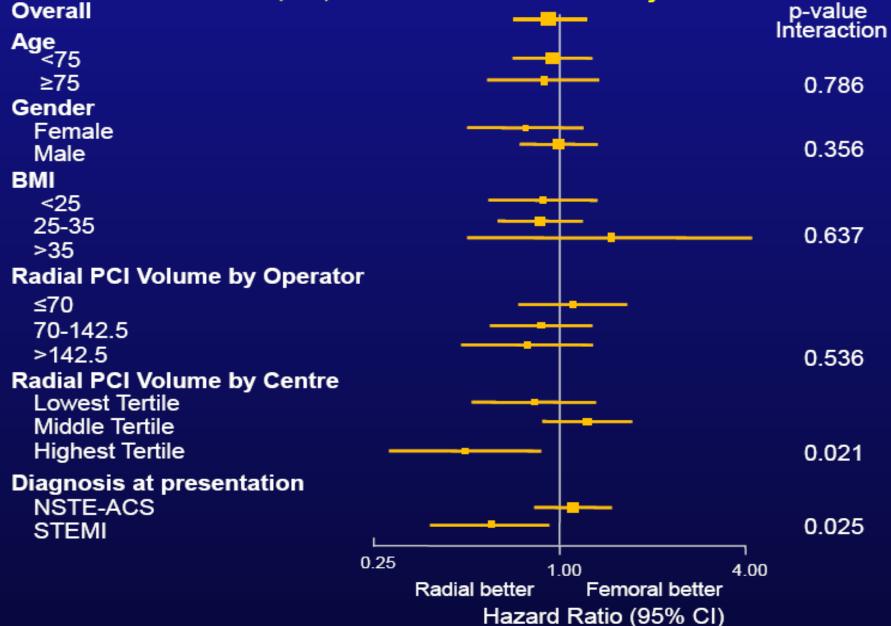
Primary and Secondary Outcomes

RIVAL


	Radial (n=3507) %	Femoral (n=3514) %	HR	95% CI	Ρ
Primary Outcome					
Death, MI, Stroke, Non-CABG Major Bleed	3.7	4.0	0.92	0.72-1.17	0.50
Secondary Outcome	s				
Death, MI, Stroke	3.2	3.2	0.98	0.77-1.28	0.90
Non-CABG Major Bleeding	0.7	0.9	0.73	0.43-1.23	0.23

Other Outcomes

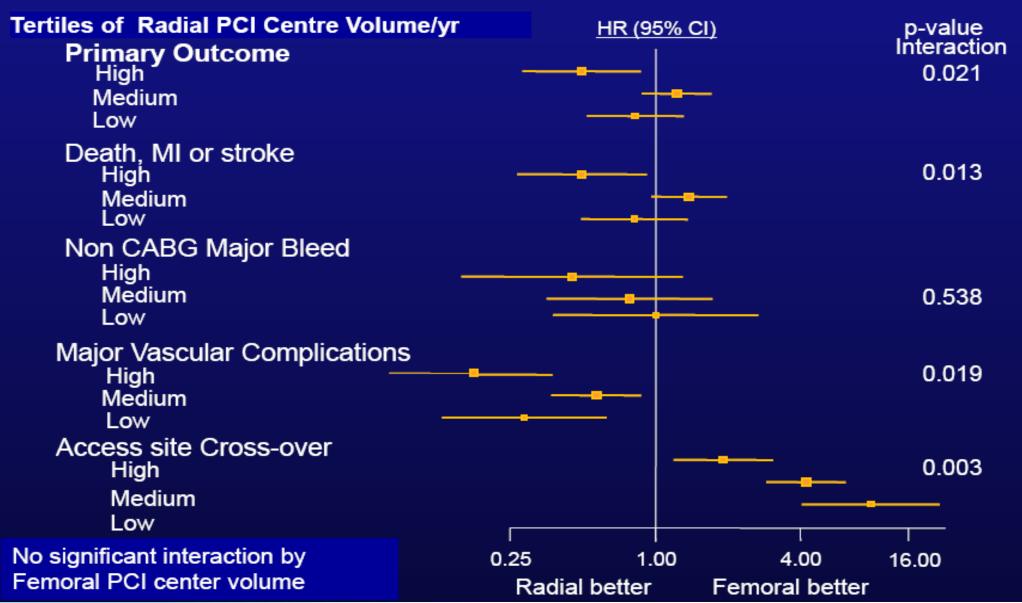
	Radial (n=3507) %	Femoral (n=3514) %	HR	95% CI	P
Major Vascular Access Site Complications	1.4	3.7	0.37	0.27-0.52	<0.0001
Other Definitions of M	lajor Ble	eding			
TIMI Non-CABG Major Bleeding	0.5	0.5	1.00	0.53-1.89	1.00
ACUITY Non-CABG Major Bleeding*	1.9	4.5	0.43	0.32-0.57	<0.0001


* Post Hoc analysis

Outcomes stratified by STEMI vs. NSTEACS

Subgroups: Primary Outcome

Death, MI, Stroke or non-CABG major Bleed



Results stratified by

RIVAL

High*, Medium* and Low* Volume Radial Centres

*High (>146 radial PCI/year/ median operator at centre), Medium (61-146), Low (≤60)

Outcomes by access site used to complete the procedure

	Radial	Femoral	n
Crossover (failure)(%)	7	0.9	
Primary endpoint (%)	3.4	4.1	0.14
Death/MI/Stroke (%)	3.1	3.3	0.52
Non CABG maj. bleed (%)	0.6	1.0	0.025
Access site maj. Bleed (n)	0	18	

www.icps.com.fr

Jolly Lancet 2011; 377: 1409–20

Conclusions

- Access site complications are a major concern for modern coronary interventional cardiology
- Risk of acute and mid term Mortality, MI and Stroke are related to the rate of major bleeding
- Radial approach reduces near abolishes the risk of access related major complications
- MORTAL study and metaanalysis suggest a mortality reduction with transradial approach (specially for STEMI: RIFFLE)

Conclusions

- RIVAL: similar rates of the composite of death, myocardial infarction, stroke, or non-CABG-related major bleeding
- RIVAL: subgroup analysis confirm a reduction of mortality for STEMI
- RIVAL: Primary endpoint, Death/MI/Stroke, Major non CABG bleeding are reduced with a trend for Death in highest tercile of radial approach volume
- RIVAL: effectiveness of radial access might be linked to expertise and volume