

Practical Use of MSCT in CTO PCI

Yasumi Igarashi

Hokkaido Social Insurance Hospital

Clinical significance of recanalized CTO

Acute phase

- 1. Relief of symptom
- 2. Safety margin in PCI of other vessel
- 3. Escape from bypass surgery

Chronic phase

- 4. Improvement of LV function
- 5. Collateral for the future diseased vessel
- 6. Improvement of long-term prognosis

DEMONSTRATION COURSE 2011

Screening CCTA

Conventional CAG vs Coronary CTA

Extractive information

< Catheter angiogram >

< CT angiogram >

- Shape of open vessels
- Distribution of calcium
- Collateral circulation

- Shape of open vessels
- Distribution of calcium
- Collateral circulation
- Distribution of soft plaque
- Shape of closed vessels

COURSE 2011

CCTA predictors of procedural failure of CTO PCI

 TABLE 3
 Angiographic and MSCT Coronary Angiographic Multivariate Predictors of Procedural Failure for Chronic Total

 Occlusion

							Hosmer- Lemeshow Test		
Variable	Coefficient	Wald's Chi-square	DF	p Value	OR (95% CI)	-2 Log Likelihood	DF	p Value	C Index
Clinical/angiographic						50.0	2	0.66	0.80
Occlusion duration >9 mo Tapered stump Constant	1.27 -1.93	3.30 7.46	1	0.07 <0.01	3.56 (0.90–14.02) 0.15 (0.04–0.58)	_			
MSCT coronary angiography						44.2	6	0.99	0.84
Occlusion length >15 mm Severe calcification	1.86 2.49	5.21 6.51	1 1	0.02 0.01	6.39 (1.30–31.41) 12.01 (1.78–81.1)				
Stump morphology Blunt	1 (reference)	5.63	2	0.06					
Tapered Not determinable Constant	-2.19 -2.65 -0.45	5.23 3.46 0.26	1 1 1	0.02 0.06 0.6	0.11 (0.02–0.73) 0.07 (0.00–1.15) —				
Clinical/angiographic + MSCT coronary angiographic predictors						41.0	5	0.60	0.85
Tapered stump* Occlusion length >15 mm Severe calcification	-2.43 2.17 2.03	7.98 6.16 5.18	1 1 1	<0.01 0.01 0.02	0.09 (0.02–0.48) 8.77 (1.58–48.76) 7.62 (1.33–43.74)				
Constant	-0.67	0.74	1	0.4	_				

*A -2 log-likelihood change in the global model if 1 variable is removed: tapered stump -10.7 (p <0.01 for change), occlusion length -8.2 (p <0.01), and calcification -6.6 (p = 0.01 for change).

DF = degrees of freedom; other abbreviations as in Table 2.

Mollet NR et al, Value of Preprocedure Multislice Computed Tomographic Coronary Angiography to Predict the Outcome of Percutaneous Recanalization of Chronic Total Occlusions. Am J Cardiol 2005;95:240-243

Multivariate predictors of procedure failure in PCI for CTO

	Odds Ratio	p-Value	95% CI	Likelihood Ratio Test p-Value
Vessel bending, n	20.62	< 0.0001	4.72-90.09	< 0.0001
Vessel shrinkage, n	10.76	0.0078	1.87-62.05	0.0057
Severe calcification, n	4.54	0.0342	1.12-18.38	0.0307

Mariko Ehara, Osamu Katoh, Takahiko Suzuki et al. Impact of Multislice Computed Tomography to Estimate Difficulty in Wire Crossing in Percutaneous Coronary Intervention for Chronic Total Occlusion. J Invasive Cardiol. 2009 Nov;21(11):575-82.

APPORO LIVE DEMONSTRATION COURSE 2011 1-3,September

Table 4. Impact of morphological features on wiring success as observed by CTCA.

	Detected Group		Non	t.Valua	
Findings on CTCA	Total	No. of Successes	Total	No. of Successes	p-value
Vessel bending Vessel shrinkage, n Severe calcification, n Tapered stump, n Significant side branch, n In-stent occlusion, n Occlusion length ≥ 20 mm, n	30 9 24 56 62 18 51	17 (57%) 4 (44%) 17 (71%) 46 (82%) 50 (81%) 16 (89%) 41 (80%)	80 101 86 54 48 92 59	76 (95%) 89 (88%) 76 (88%) 47 (87%) 43 (90%) 77 (84%) 52 (88%)	< 0.0001 0.0005 0.0356 0.5542 0.1984 0.5772 0.2625
Occlusion length \geq 30 mm, <i>n</i>	25	19 (76%)	85	74 (87%)	0.1787

CTCA = multislice computed tomographic coronary angiography

DEMONSTRATION COURSE 2011

SAPPORO LIVE DEMONSTRATION GOURSE 2011

I-3,September

Shape of closed vessels

Straight vessel ?Bending vessel ?

- Shrinkage? heral Angioplash

CCTA predictors of procedural failure for CTO

CASE 2 (OCT/06) his 70's Male RCA ostial CTO case

angiogram

super selective tip injection septal branch angiography

wire passed septal junction

1-3,September

DEMONSTRATION COURSE 2011

1.25mm OTW balloon dilatation

antegrade approach with Tornus backup

LAO

antegrade approach with Tornus backup

COURSE 2011

SAPPORO LIVE DEMONSTRATION COURSE 2011

COURSE 2011

k Peripheral Angioplasty

Reverse CART technique

DES to RCA#1

omplex PCI & Peripheral Angioplasty

APPORO LIVE DEMONSTR COURSE 2

1-3,September

Final angiogram

Conventional CAG vs Coronary CTA

Extractive information

< Catheter angiogram >

< CT angiogram >

- Shape of open vessels
- Distribution of calcium
- Collateral circulation

- Shape of open vessels
- Distribution of calcium
- Collateral circulation
- Distribution of soft plaque
- Shape of closed vessels

COURSE 2011

Distribution of calcium

-3,September Microscopic CT images of CTO Outside Eas calcification **Difficult** Center side calcification 3D MIP MPR

Gregg W. Stone, David E. Kandzari, Roxana M, et al : Percutaneous recanalization of chronically occluded coronary arteries : A consensus document : Part 1, Circulation. 2005; 112: 2364-2372

Bi-lateral injection

Rt femoral A 8Fr sheath G/C : mach 1 FR 4.0 SH 8Fr Lt femoral A 8Fr sheath

Distribution of calcium

$_{3}\text{D}$ MIP (LAO $_{45}^{\circ}$)

Curved MPR

Distribution of calcium

SAPPORO UNE DEMONSTRATION COURSE 2011 1-3,September

Curved MPR

Cross sectional view

Antegrade wiring

ptember

ngioplasty

Anchor balloon:φ2.0x15 Voyager OTW: φ1.25x10 Ryujin G/W: Fielder FC

otember

igioplasty

OTW exchange to TORNUS

G/W: Fielder FC

oplasty DIN

BC: φ2.5x15Voyager

SAPPORO LIVE DEMONSTRATION COURSE 2011 1-3,September

omplex PCI & Peripheral Angioplasty

M/C: Crusade G/W: Miracle $3g \rightarrow Miracle 12g \rightarrow Conquest pro 12g$

Distribution of calcium

$_{3}\text{D}$ MIP (LAO $_{45}^{\circ}$)

Curved MPR

Antegrade wire crossing

Ante. G/W: Miracle 12g

Ante. BC: φ2.5x15 Voyager

SAPPORO LIVE DEMONSTRATION COURSE 2011

#3 dis : φ2.5x16 TAXUS Express ² #2 dis ~#3 prox : φ2.75x32 TAXUS Express ² #3 prox : φ3.0x8 TAXUS Express ²

LAO 45

RCA CTO

RAO 30° Cd 30°

The form of the vessel is guessed

3DMAP assists PCI

The form of the vessel is confirmed with CTA in the same direction.

3DMAP assists PCI

COURSE ZOLI

MSCT for CTOs

- Volume-rendered MSCT image provides a 3-demensional overview of the coronary segment, and a collateral filling on MSCT can be more clearly visible than on coronary angiography.
- Maximum intensity projection (MIP) allows evaluation of the morphology of the CTO lesion.

<u>We can know in advance</u>

- the tortuosity of the occluded artery.
- the relation between side branch and target lesion.
- •the reliable length measurement of occluded segment.
- the localization of calcification within occluded artery.
- the adequate fluoroscopic angle for PCI procedure.

3DMAP Coronary artery

<u>3D MAP-CT can present the adequate fluoroscopic angle for PCI.</u>

LAO 35° Cr 35°

Work Station : Advantage Windows XT

CTO: 3D MAP

1-3,September

COURSE 2011

Display of 3D MAP in Catheterization laboratory

SAPPORO LIVE DEMONSTRATION COURSE 2011

1.2.Septembe

Display of 3D MAP in Catheterization laboratory at the future

COURSE ZULI

Septen