# EES vs. SES in Unprotected Left Main PCI Results from the Content of the PCI Protected Left Main PCI

### Kyung Woo Park, MD, PhD Department of Internal Medicine, Cardiovascular Center, Seoul National University Hospital





## Disclosure

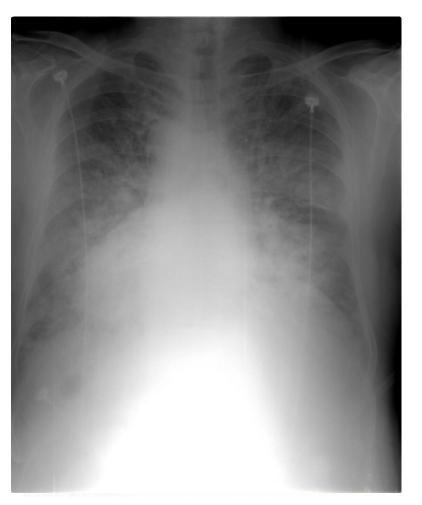
• I, Kyung Woo Park, have nothing to disclose.



Cardiovascular Center Seoul National University Hospital



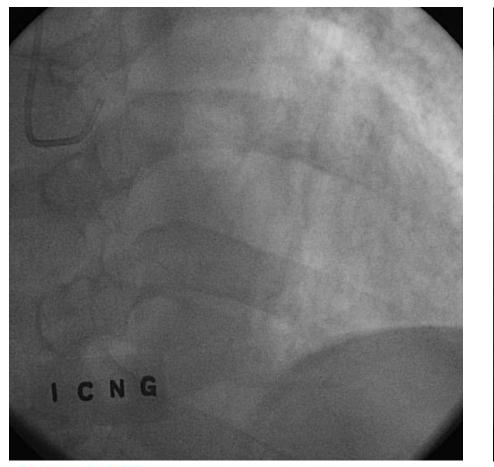
### **Treatment of Unprotected**

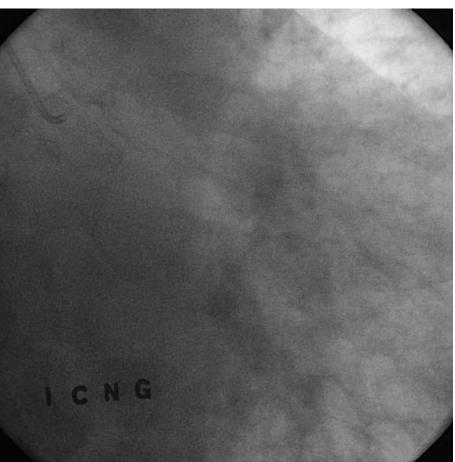

### Left Main Coronary Artery Disease

# PCI vs. CABG



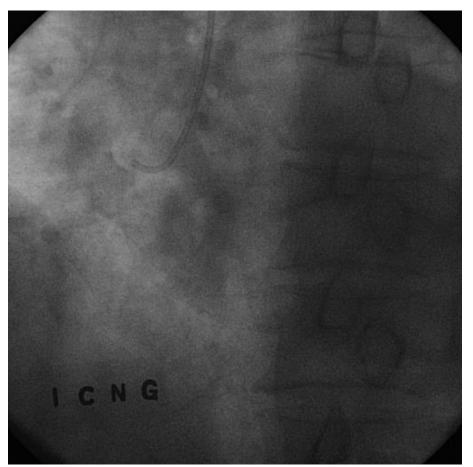
### 66/M


Known chronic stable angina Suffered from watery diarrhea for several days d/t infectious colitis Showed up for chest pain continuing for 4 hours



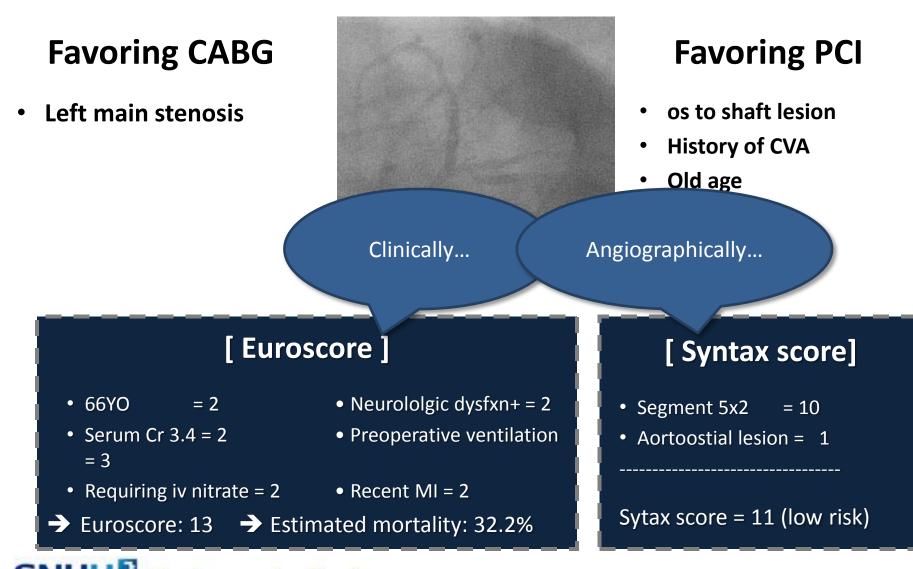

V/S: 173/121 – 183 – 20 – 35.7 ℃ Hb: 17.5 gm/dL Creatinine: 3.4 mg/dL CK-MB: 33 ng/mL Troponin I: 14.2 ng/mL

Clinical Dx: NSTEMI, Killip class III


### 66/M NSTEMI, Killip class III Left main coronary artery disease








### 66/M NSTEMI, Killip class III Left main coronary artery disease



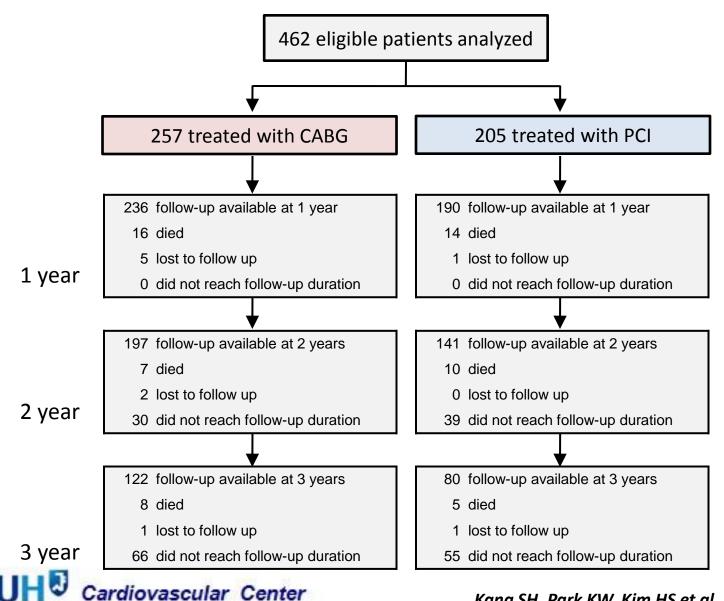


# CABG? vs. PCI?



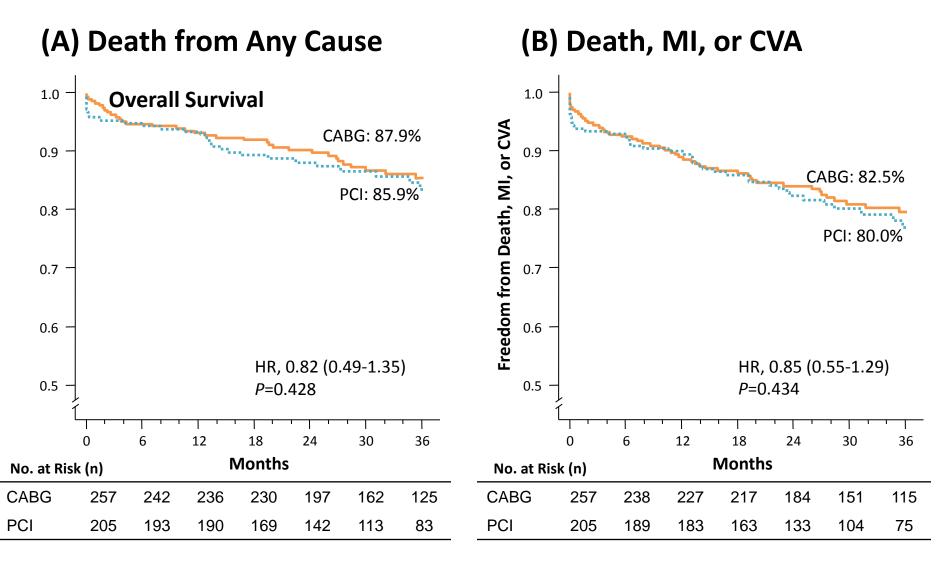
#### Cardiovascular Center

**Changing concept:** PCI could be considered as an alternative of CABG in patients with LMCA.




### After thorough discussion... Successful PCI with Taxus<sup>™</sup> However, 4 days later...

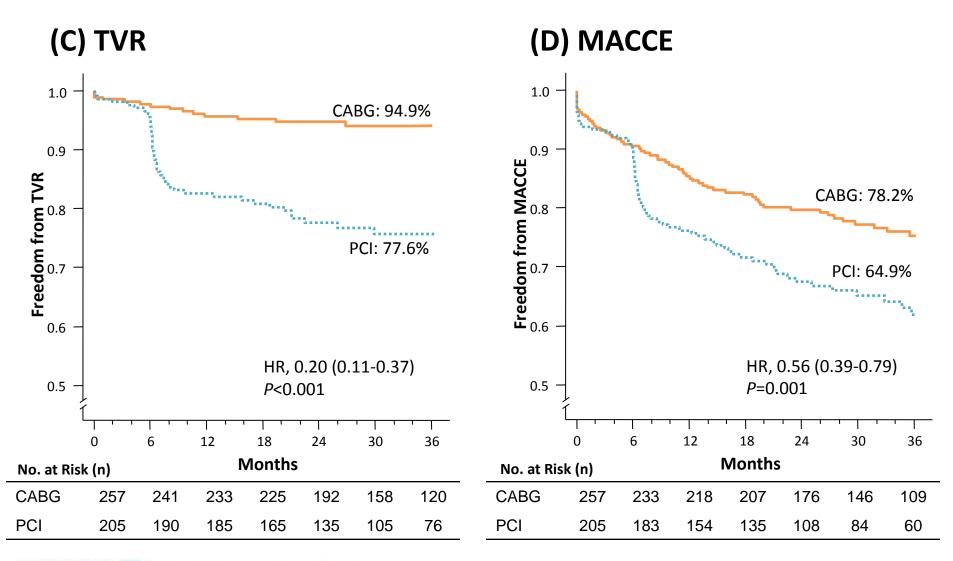





#### **SNUH Registry Data**



Kang SH, Park KW, Kim HS et al. Am J Cardiol; 2010

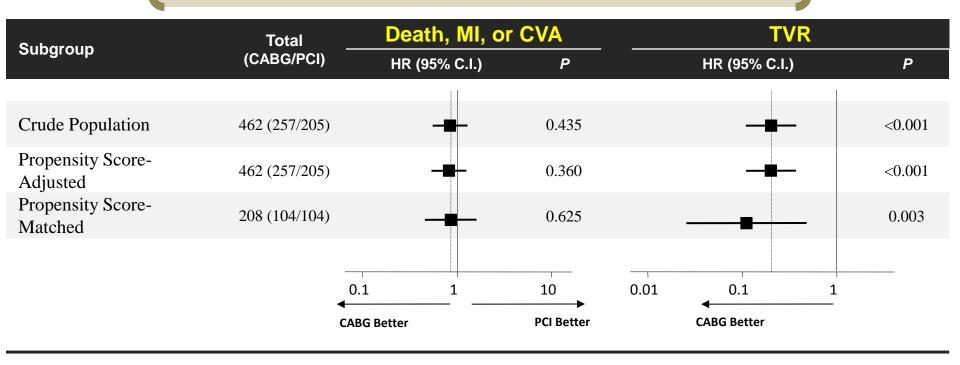

**SNUH Registry Data** 





Kang SH, Park KW, Kim HS et al. Am J Cardiol; 2010

**SNUH Registry Data** 

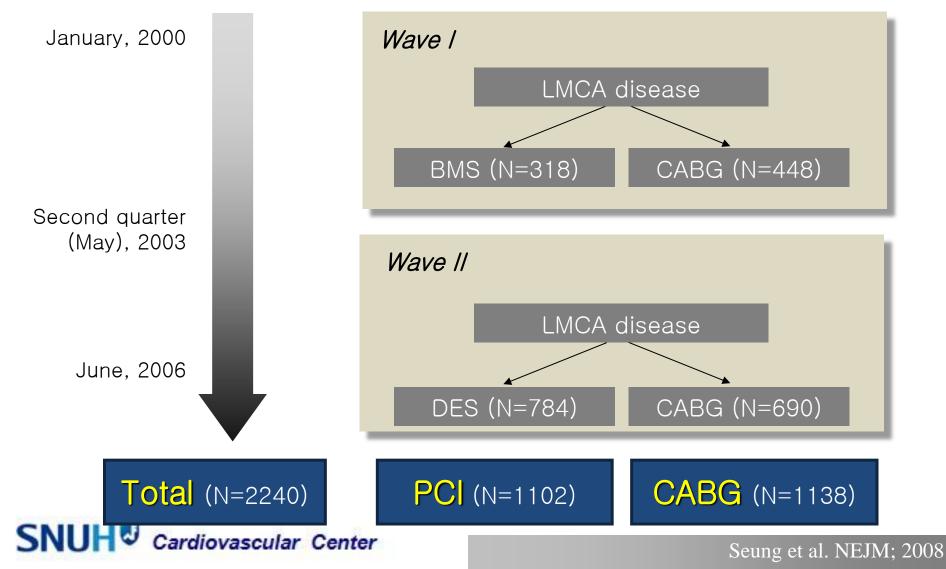



#### SNUH Cardiovascular Center

Kang SH, Park KW, Kim HS et al. Am J Cardiol; 2010

#### **SNUH Registry Data**

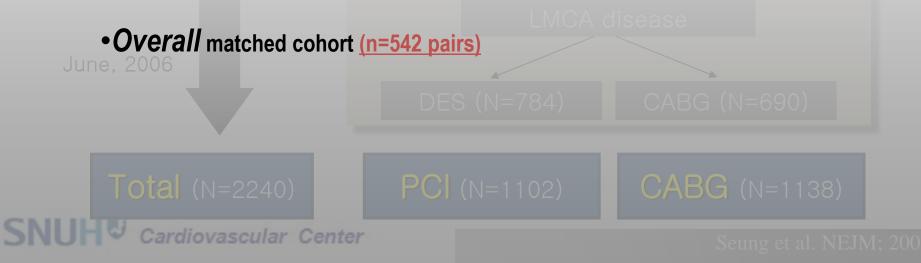
#### **Propensity Score Analysis**




Scoring propensity to each treatment strategy

Cardiovascular Center

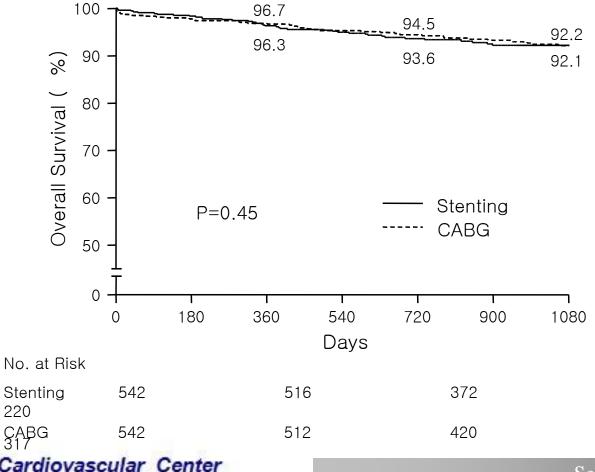
 Covariates: sex, age, BMI, indication of revascularization, extent of involved vessel, disease location, type of bifurcation, diabetes, hypertension, current smoking, stroke, peripheral vascular disease, familial history of coronary artery disease, dyslipidemia, chronic kidney diease, serum creatinine, lipid levels (total, LDL, HDLcholesterol and triglyceride), ejection fraction, use of GP IIb/IIIa inhibitors, emergency procedures, and EuroSCORE


#### Stenting (BMS or DES) vs. CABG



### Korean Multicenter MAIN-COMPARE Registry Data Stenting (BMS or DES) vs. CABG

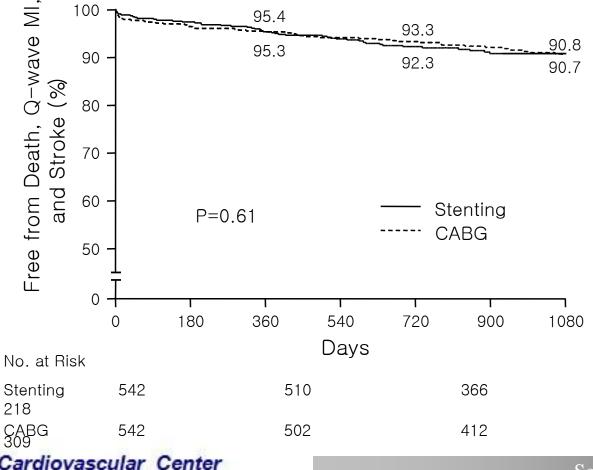
After Propensity-Matching


•*Wave 1;* BMS vs. contemporary CABG (<u>n=207 pairs</u>) •*Wave 2;* DES vs. contemporary CABG (<u>n=396 pairs</u>)



Death

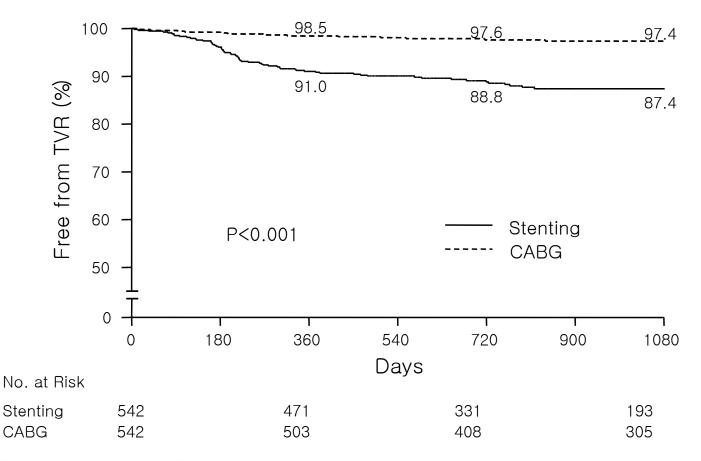
SNI


(Overall PCI and CABG matched cohort: 542 pairs)



Seung et al. NEJM; 2008

#### Death, Q-MI, or Stroke


(Overall PCI and CABG matched cohort: 542 pairs)



Seung et al. NEJM; 2008

#### **Target-Vessel Revascularization**

(Overall PCI and CABG matched cohort: 542 pairs)

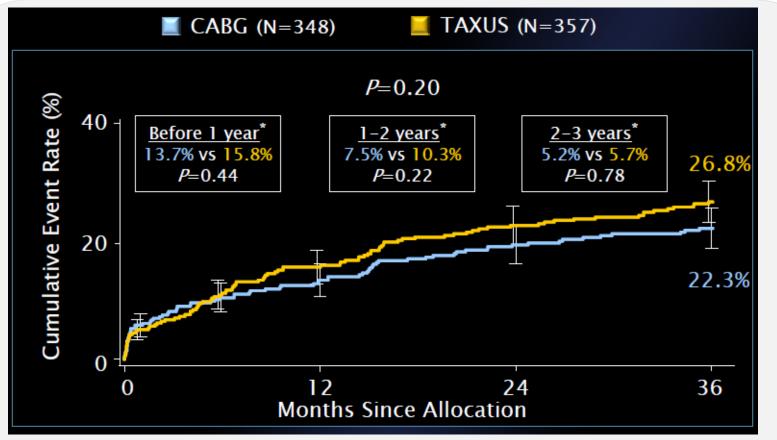




Seung et al. NEJM; 2008

#### **Hazard Ratios for Clinical Outcomes**

(Overall PCI and CABG matched cohort: 542 pairs)

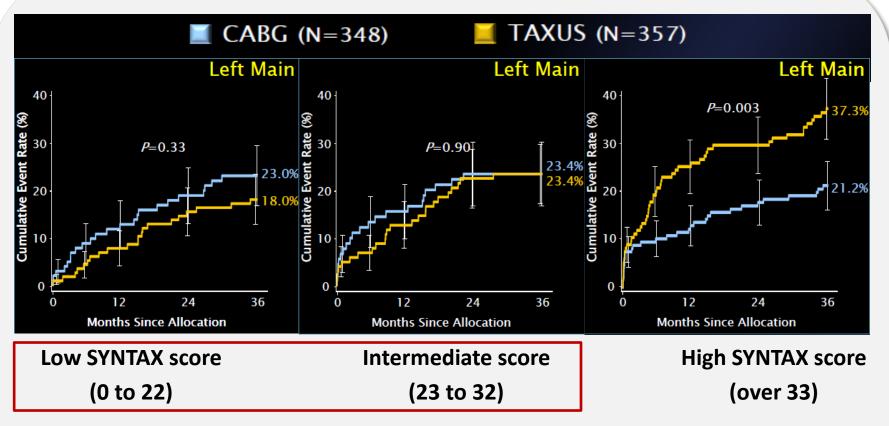

| Outcomo                                                               | <b>Overall Patients (N=542 pairs)</b> |         |  |
|-----------------------------------------------------------------------|---------------------------------------|---------|--|
| Outcome                                                               | HR* (95% CI)                          | P value |  |
| Death                                                                 | 1.18 (0.77-1.80)                      | 0.45    |  |
| Composite outcome<br>(death, Q-wave myocardial infarction, or stroke) | 1.10 (0.75-1.62)                      | 0.61    |  |
| Target-vessel revascularization                                       | 4.76 (2.80-8.11)                      | <0.001  |  |

\*HR are for the stenting group, as compared with CABG group



## **CABG vs. TAXUS**

#### SYNTAX Left Main Subset: MACCE up to 3 years




MACCE = death, stroke, MI, or repeat revascularization

• Revascularization with PCI has comparable safety and efficacy outcomes to CABG

## CABG vs. TAXUS

#### SYNTAX LM: MACCE according to SYNTAX score



 PCI is a reasonable alternative to CABG in patient with low and intermediate SYNTAX score.

# **PCI for unprotected Left Main**

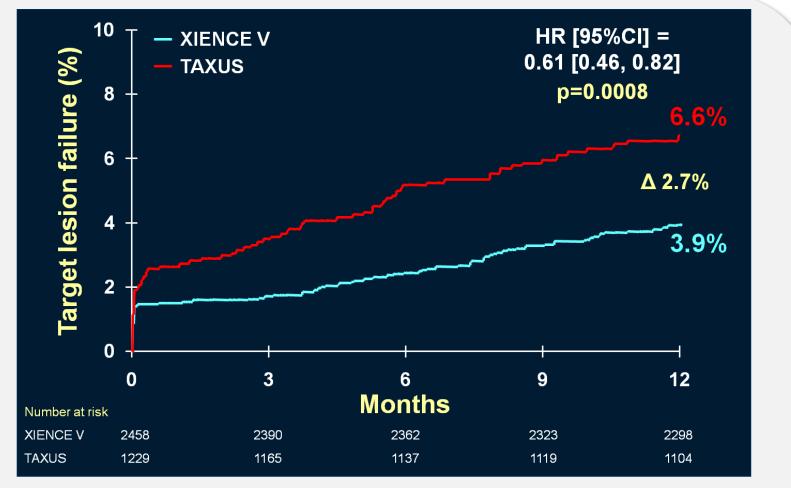
NEW Recommendation



PCI of the LMA using stents as an alternative to CABG may be considered in patients with anatomic conditions that are associated with low risk of PCI procedural complications and Clinical conditions that predict an increased risk of adverse surgical outcomes

NUH Cardiovascular Center

ACC/AHA 2009 Joint STEMI/PCI Guidelines Focused Update


# **Everolimus-eluting stents in LM ?**

 EES was superior to PES in inhibiting neointima formation and clinical outcomes in randomized trials and meta-analyses.

 However data comparing the clinical outcomes of EES with first generation DES in the treatment of ULMCA lesions is very limited.



## **EES vs. PES** SPIRIT IV: TLF at 1 year → 40% RRR

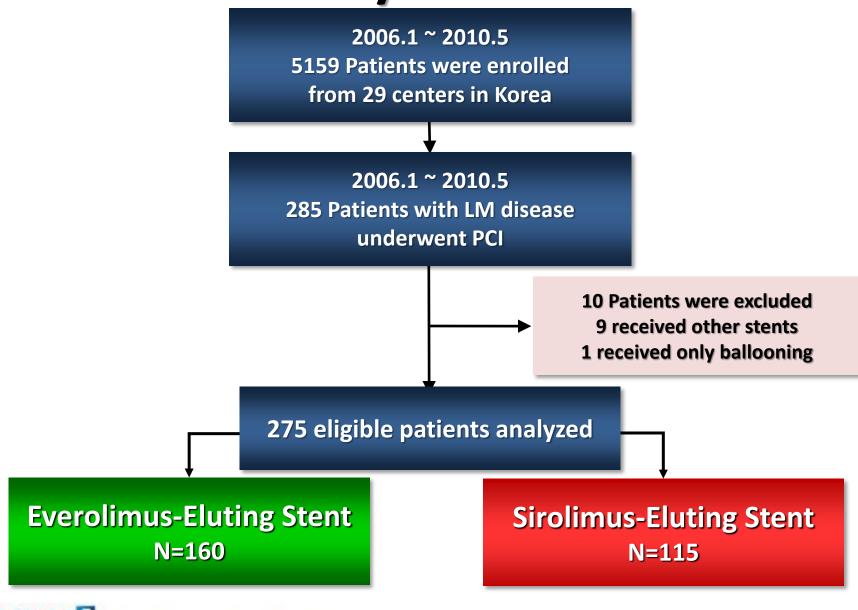


TLF = cardiac death, target vessel MI, or ischemia-driven TLR

# **Study Objective**

 To evaluate the efficacy and safety of stenting with everolimus-eluting stent (EES) compared with sirolimus-eluting stent (SES) for the treatment of unprotected left main coronary artery (ULMCA) stenosis in the "real world" setting.




# **EXCELLENT-Registry**

Efficacy of Xience/Promus versus Cypher to rEduce Late Loss after stENTing Registry

- An open label, multi-center, all-comer registry
- Prospective cohort of EES
- Retrospective historical cohort of **SES**



# **Study Scheme**



SNUH Cardiovascular Center

# **Study Endpoints**

• Primary Endpoint: 1-year Major Adverse Cardiac Events (MACE; a composite of death, MI, ID-TVR)

#### Other Clinical Endpoints:

✓Any death, cardiac death, MI, ID-TVR at 30 days, 6months, 1 year

- ✓ Stent Thrombosis at 24 hours (acute), 30 days (subacute), 1 year (late)
- $\checkmark$  Hard endpoint: composite of death and MI at 1 year
- ✓ Clinical device and procedural success



## **Baseline Clinical Characteristics**

| Variables — no. (%)                   | EES<br>(N=160) | SES<br>(N=115) | p-value |
|---------------------------------------|----------------|----------------|---------|
| Demographic characteristics           |                |                |         |
| Age, years — mean±SD                  | 64.7±10.6      | 64.0±10.8      | 0.591   |
| Males                                 | 114 (71.2)     | 84 (73.0)      | 0.744   |
| Body-mass index, kg/m <sup>2</sup>    | 24.8±3.4       | 24.5±2.6       | 0.379   |
| Risk factors or Coexisting conditions |                |                |         |
| Diabetes mellitus                     | 62 (39.0)      | 46 (40.0)      | 0.866   |
| Hypertension                          | 95 (61.3)      | 57 (50.0)      | 0.065   |
| Dyslipidemia                          | 120 (75.5)     | 87 (75.7)      | 0.973   |
| Current smoker                        | 43 (27.0)      | 31 (27.4)      | 0.943   |
| Chronic renal failure                 | 4 (2.5)        | 4 (3.5)        | 0.724   |
| Family history of CAD                 | 15 (10.1)      | 7 (6.5)        | 0.303   |
| Cerebrovascular disease               | 17 (10.8)      | 7 (6.2)        | 0.187   |



## **Baseline Clinical Characteristics**

| Variables — no. (%)                   | EES<br>(N=160) | SES<br>(N=115) | p-value |
|---------------------------------------|----------------|----------------|---------|
| Risk factors or Coexisting conditions |                |                |         |
| Previous MI                           | 14 (8.8)       | 11 (9.6)       | 0.812   |
| Previous PCI                          | 22 (13.9)      | 22 (19.1)      | 0.248   |
| Previous CABG                         | 6 (3.8)        | 7 (6.1)        | 0.380   |
| Previous CHF                          | 4 (2.5)        | 2 (1.8)        | 1.000   |
| Peripheral arterial disease           | 2 (1.3)        | 1 (0.9)        | 1.000   |
| Left ventricular ejection fraction, % | 59.3±12.0      | 60.4±11.0      | 0.505   |
| Clinical indications                  |                |                | 0.407   |
| Silent ischemia                       | 5 (3.1)        | 1 (0.9)        |         |
| Chronic stable angina                 | 63 (39.6)      | 48 (41.7)      |         |
| Unstable angina                       | 66 (41.5)      | 45 (39.1)      |         |
| NSTEMI                                | 17 (10.7)      | 10 (8.7)       |         |
| STEMI                                 | 8 (5.0)        | 11 (9.6)       |         |



## **Medication at discharge**

| Variables — no. (%)                | EES<br>(N=156) | SES<br>(N=110) | p-value |
|------------------------------------|----------------|----------------|---------|
| Aspirin                            | 154 (98.7)     | 109 (99.1)     | 1.000   |
| Clopidogrel                        | 154 (98.7)     | 110 (100.0)    | 0.513   |
| Statin                             | 143 (91.7)     | 89 (80.9)      | 0.010   |
| ACE inhibitor                      | 47 (30.3)      | 40 (36.7)      | 0.278   |
| Angiotensin II-receptor antagonist | 54 (34.8)      | 40 (36.4)      | 0.798   |
| Beta-blocker                       | 91 (58.3)      | 68 (61.8)      | 0.568   |
| Calcium-channel blocker            | 40 (25.6)      | 36 (32.7)      | 0.208   |



| Variables — no. (%)             | EES<br>(N=160) | SES<br>(N=115) | p-value |
|---------------------------------|----------------|----------------|---------|
| Before index procedure          |                |                |         |
| Disease extent                  |                |                | 0.273   |
| Left main only                  | 27 (16.9)      | 11 (9.6)       |         |
| Left main + 1 vessel disease    | 82 (51.2)      | 68 (59.1)      |         |
| Left main + 2 vessel disease    | 44 (27.5)      | 33 (28.7)      |         |
| Left main + 3 vessel disease    | 7 (4.4)        | 3 (2.6)        |         |
| Left main + multivessel disease | 51 (31.9)      | 36 (31.3)      | 0.920   |
| Significant RCA disease         | 22 (13.8)      | 15 (13.0)      | 0.866   |
| Total occlusion                 | 7 (4.4)        | 5 (4.5)        | 1.000   |
| Thrombus-containing             | 4 (2.5)        | 1 (0.9)        | 0.652   |
| Calcification                   | 64 (39.6)      | 43 (38.7)      | 0.884   |



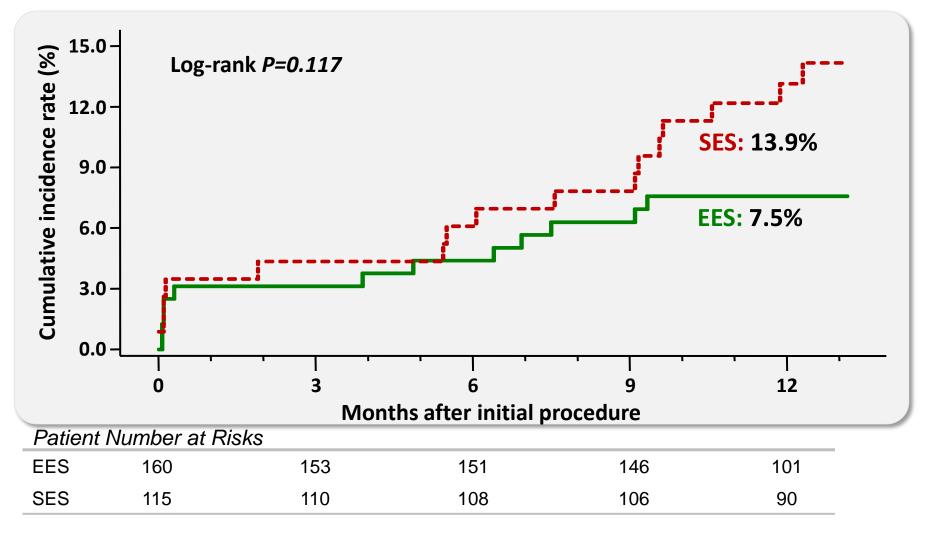
| Variables — no. (%)            | EES<br>(N=160)  | SES<br>(N=115) | p-value |
|--------------------------------|-----------------|----------------|---------|
| Before index procedure         |                 |                |         |
| Lesion location                |                 |                | 0.774   |
| Ostium and shaft               | 53 (33.1)       | 40 (34.8)      |         |
| Bifurcation                    | 107 (66.9)      | 75 (65.2)      |         |
| Distal LM involvement          | 67 (41.9)       | 49 (42.6)      | 0.903   |
| SYNTAX score                   | 20.53 ± 11.64   | 20.93 ± 11.26  | 0.618   |
| SYNTAX score ≥ 33              | 24 (15.0)       | 16 (14.0)      | 0.824   |
| Minimal luminal diameter (mm)  | $1.14 \pm 0.57$ | 0.98 ± 0.53    | 0.014   |
| Reference vessel diameter (mm) | $3.40 \pm 0.58$ | 3.37 ± 0.50    | 0.658   |
| Diameter stenosis (%)          | 66.65 ± 14.73   | 71.03 ± 15.00  | 0.017   |
| Lesion length (mm)             | 18.49 ± 14.78   | 17.98 ± 13.41  | 0.774   |



| Variables — no. (%)                     | EES<br>(N=160)  | SES<br>(N=115)  | p-value |
|-----------------------------------------|-----------------|-----------------|---------|
| After index procedure                   |                 |                 |         |
| No. of stents used in LM                | $1.31 \pm 0.60$ | $1.25 \pm 0.51$ | 0.436   |
| No. of stents per patient               | $1.60 \pm 0.99$ | 1.57 ± 0.82     | 0.817   |
| Total stent length in LM (mm)           | 28.34 ± 17.27   | 29.20 ± 15.34   | 0.671   |
| Use of glycoprotein IIb/IIIa inhibitors | 6 (4.0)         | 2 (1.8)         | 0.473   |
| Use of intraaortic balloon pump         | 8 (5.0)         | 5 (4.3)         | 0.802   |
| Use of intravascular ultrasound         | 117 (75.0)      | 86 (75.4)       | 0.934   |
| Final balloon pressure (atm)            | 15.01 ± 4.50    | 16.02 ± 4.27    | 0.075   |
| Treatment of RCA disease                | 20 (12.5)       | 12 (10.4)       | 0.598   |



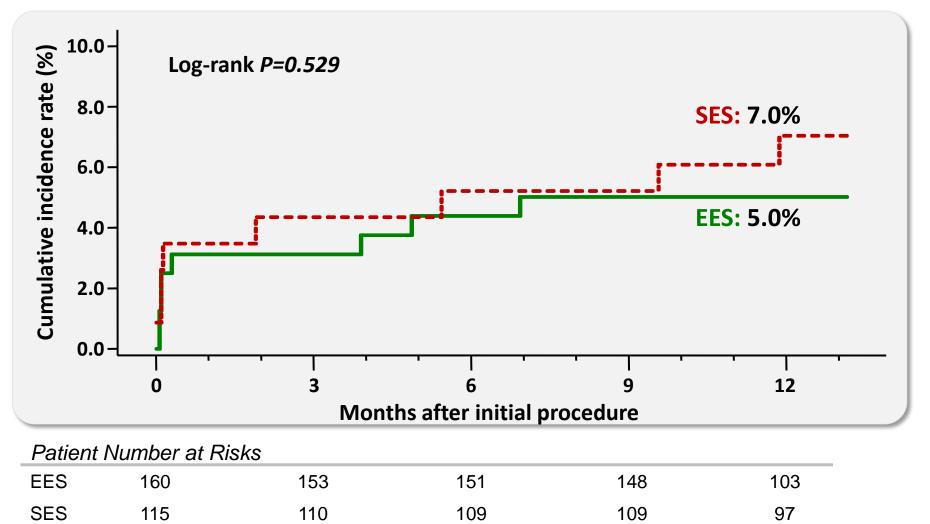
| Variables — no. (%)           | EES<br>(N=160)  | SES<br>(N=115)  | p-value |
|-------------------------------|-----------------|-----------------|---------|
| After index procedure         |                 |                 |         |
| Minimal luminal diameter — mm |                 |                 |         |
| In stent                      | 2.94±0.58       | 2.91±0.45       | 0.596   |
| In segment                    | 2.47±0.60       | $2.42 \pm 0.59$ | 0.516   |
| Diameter stenosis — %         |                 |                 |         |
| In stent                      | 12.38±9.16      | 9.63±8.65       | 0.015   |
| In segment                    | 22.51±11.32     | 20.22±11.84     | 0.112   |
| Acute gain — mm               |                 |                 |         |
| In stent                      | 1.81±0.57       | $1.91 \pm 0.54$ | 0.155   |
| In segment                    | $1.34 \pm 0.60$ | $1.41 \pm 0.64$ | 0.349   |
| Lesion success                | 153 (96.8)      | 111 (96.5)      | 1.000   |
| Device success                | 154 (97.5)      | 112 (97.4)      | 1.000   |
| Procedure success             | 154 (97.5)      | 112 (97.4)      | 1.000   |




# **Clinical Outcomes**

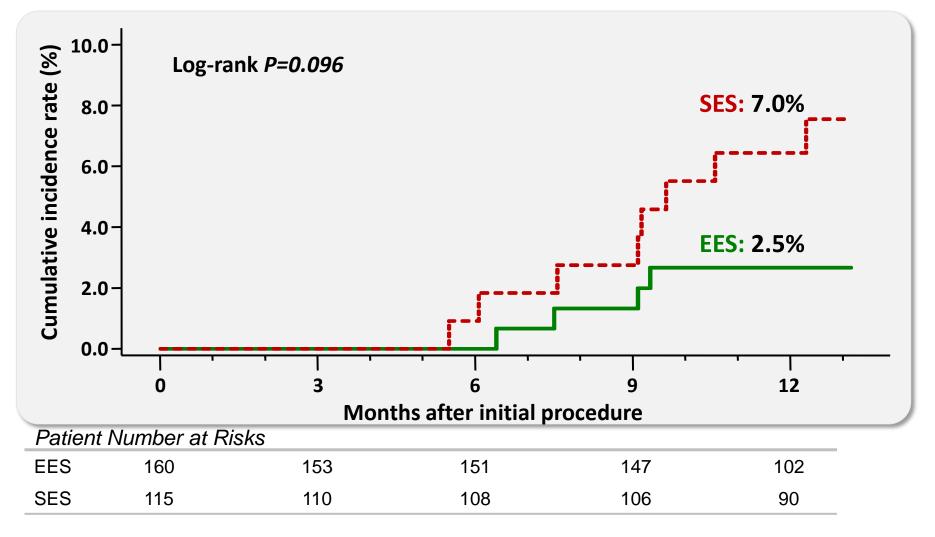


#### **Major Adverse Cardiac Event**


: Composite of death, MI, or ID-TVR

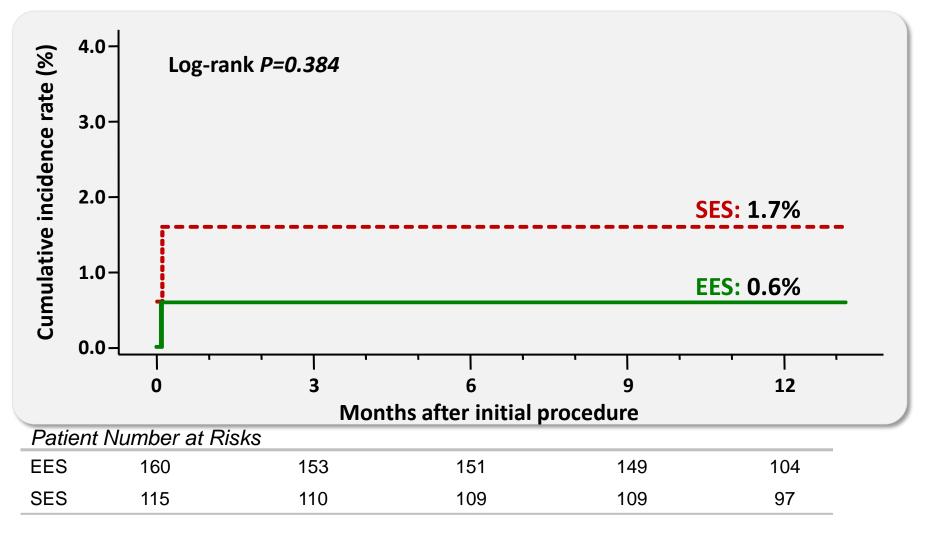





# Hard Endpoint

: Composite of all-cause death, or MI




# Soft Endpoint

#### Ischemia-driven TVR



## **Stent Thrombosis**

: Definite/Probable ST by ARC definition



#### Subgroup analysis regarding MACE

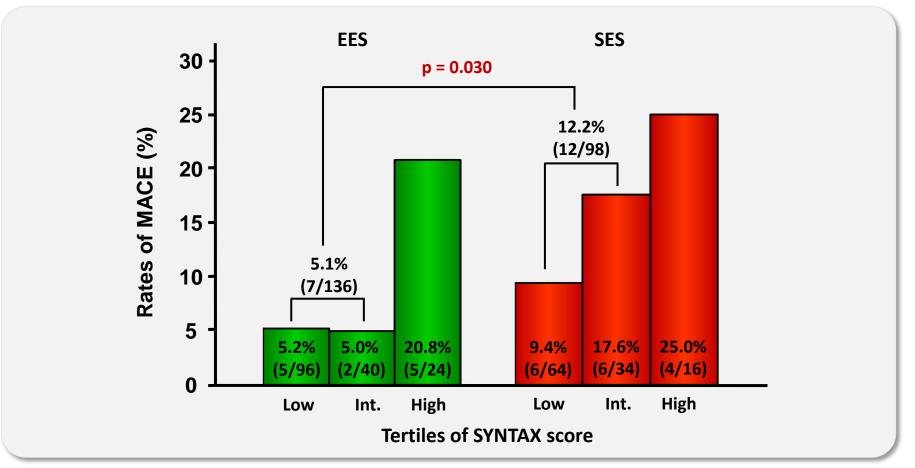
| Subgroups              | No. of MACE (%) |      |      | Relative Risk (95% CI) | Interaction P |  |
|------------------------|-----------------|------|------|------------------------|---------------|--|
| Cangleape              | patients        | EES  |      |                        | interaction   |  |
| Diabetes mellitus      |                 |      |      |                        | 0.089         |  |
| Yes                    | 108             | 14.5 | 15.2 |                        |               |  |
| No                     | 166             | 3.1  | 13.0 | ← ■                    |               |  |
| Age                    |                 |      |      |                        | 0.631         |  |
| ≥ 70                   | 136             | 8.4  | 13.2 | <b></b>                |               |  |
| < 70                   | 139             | 6.5  | 14.5 |                        |               |  |
| Renal dysfunction      |                 |      |      |                        | 0.427         |  |
| CCr ≤ 60               | 103             | 12.9 | 21.2 |                        |               |  |
| CCr > 60               | 170             | 3.3  | 11.2 | ←───■─────             |               |  |
| Disease extent         |                 |      |      |                        | 0.193         |  |
| LM + 1VD               | 188             | 6.4  | 7.6  |                        |               |  |
| LM + MVD               | 87              | 9.8  | 27.8 | ← ●                    |               |  |
| Bifurcation            |                 |      |      |                        | 0.111         |  |
| Yes                    | 180             | 10.4 | 13.5 |                        |               |  |
| No                     | 95              | 1.9  | 14.6 | ←■                     |               |  |
| <b>RCA</b> involvement |                 |      |      |                        | 0.764         |  |
| Yes                    | 37              | 13.6 | 20.0 |                        |               |  |
| No                     | 238             | 6.5  | 13.0 |                        |               |  |
|                        |                 |      |      |                        |               |  |
| Overall                | 275             | 7.5  | 13.9 |                        |               |  |
|                        |                 |      |      |                        |               |  |
|                        |                 |      |      | 0.125 0.25 0.5 1 2     | 4             |  |
|                        |                 |      |      | Favors EES Favors SE   |               |  |

# Not a Randomized Controlled Trial !

- To adjust multiple variables
  - $\rightarrow$  Multivariable Cox-regression analysis

- To overcome the allocation bias
  - $\rightarrow$  Propensity score adjusted Cox-regression analysis




# **Hazard Ratios of Clinical Outcomes**

|                   | Events         |                | Unadjusted               |       | Multivariable adjusted   |       | Propensity score<br>adjusted |       |
|-------------------|----------------|----------------|--------------------------|-------|--------------------------|-------|------------------------------|-------|
| 1-year outcome    | EES<br>(n=160) | SES<br>(n=115) | Hazard Ratio<br>(95% CI) | P     | Hazard Ratio<br>(95% CI) | Ρ     | Hazard Ratio<br>(95% CI)     | Ρ     |
| Primary endpoint  |                |                |                          |       |                          |       |                              |       |
| MACE              | 12 (7.5)       | 16 (13.9)      | 0.55 (0.26-1.17)         | 0.123 | 0.45 (0.21-0.97)         | 0.042 | 0.41 (0.18-0.90)             | 0.027 |
| Clinical outcomes |                |                |                          |       |                          |       |                              |       |
| All-cause death   | 7 (4.4)        | 8 (7.0)        | 0.64 (0.23-1.77)         | 0.388 | 0.36 (0.10-1.28)         | 0.114 | 0.49 (0.17-1.44)             | 0.196 |
| Death or MI       | 8 (5.0)        | 8 (7.0)        | 0.73 (0.27-1.95)         | 0.531 | 0.48 (0.15-1.53)         | 0.216 | 0.57 (0.20-1.60)             | 0.283 |
| ID-TVR            | 4 (2.5)        | 8 (7.0)        | 0.38 (0.11-1.25)         | 0.110 | 0.38 (0.11-1.34)         | 0.133 | 0.26 (0.07-0.92)             | 0.036 |

Hazard ratio for EES with reference of SES



## **MACE according to SYNTAX tertiles**



• EES may be more efficacious in the patients with low and intermediate SYNTAX score.



# Limitations

- This study was not a prospective randomized controlled trial, but rather an observational registry study.
- The sample size was modest with a little less than 300 patients analyzed.
- Due to relatively short duration of follow-up period, safety issues cannot be determined.



# Summary

- EES showed at least similar or superior efficacy compared with SES in the treatment of ULMCA stenosis regarding the incidence of MACE.
- In the crude population analysis, clinical outcomes concerning hard endpoints (death or MI) as well as soft endpoint (ID-TVR) were not significantly different between the 2 stent groups.
- However, after propensity-adjusted Cox-regression analysis, the risk of MACE was significantly lower in the EES group compared with SES group, which was mainly driven from lower repeat revascularization in the EES group.

# Conclusion

- EES seems to be at similar if not superior in several aspects compared with SES in the treatment of ULMCA stenosis.
- Considering the head to head data in a broad population suggesting significant improvement in outcome compared with Taxus stents, the results of the SYNTAX trial may not told true in the era of 2<sup>nd</sup> generation DES
- A dedicated LM trial such as the EXCEL trial will be able to answer if PCI is truly non-inferior to CABG in the treatment of ULMCA stenosis in the 2<sup>nd</sup> generation DES era.

# Thank you for your attention!

