

Predictors of Major Adverse Clinical Events up to 5 Years in Patients with Chest Pain but without Significant Coronary Artery Disease in Korean Population

Seung-Woon Rha, M.D. , Ph.D. FACC, FAHA, FESC, FSCAI

Cardiovascular Center, Korea University Guro Hospital, Seoul, Korea

Disclosure

- Nothing to disclose
- <u>swrh617@yahoo.co.kr</u>

Background

 Obstructive coronary artery disease (CAD) is a wellknown risk factor for long-term adverse cardiovascular events.

Gibbons *et.al.* Circulation. 2003;107:149-58

 However, if no significant coronary lesion is seen on CAG despite of chest pain, the scope of determining the prognosis and its risk factors are limited.

Study Purpose

• We aimed to evaluate the predictors for long-term major adverse cardiac events (MACE) up to 5 years in patients presented with chest pain but without significant CAD.

Methods

Study Population

- A total of 10,177 subjects with typical or atypical chest pain who underwent CAG at the Cardiovascular Center of KUGH, Seoul, South Korea between November 2004 and May 2014 were enrolled for this study.
- Among these, 5,890 subjects with typical or atypical <u>chest</u> <u>pain</u> and <u>without significant coronary artery stenosis</u> (defined as having a diameter stenosis of less than 70%, as seen on the quantitative coronary angiography) underwent an intracoronary acetylcholine (ACH) provocation test.

Flow Chart(1)

ACH: acetylcholine, CAS: Coronary artery spasm, MB: myocardial bridge, ICS: insignificant coronary stenosis.

Flow Chart (2)

ACH: acetylcholine, CAS: Coronary artery spasm, MB: myocardial bridge, ICS: insignificant coronary stenosis.

Methods

- Intracoronary Ach Provocation Test
 - ✓ Ach was injected by incremental doses of 20µg (A1), 50 µg (A2) and 100 µg (A3) into the left coronary artery.
 - ✓ Significant CAS was defined as transient >70% luminal narrowing with/without ischemic ST-T Change or chest pain.

Methods

Coronary Angiogram with Positive Acetylcholine (ACH) Provocation Test in a Patient

A; Acetylcholine, N; Nitroglycerin ** Total occlusion at mid LAD with A2 injection

Methods (3)

- Study endpoints
 - ✓ Primary endpoint was the incidence of MACE as defined as the composite of total death, MI, and revascularization, including PCI and CABG.

 Secondary endpoint was the incidence of <u>recurrent</u> angina requiring repeat CAG.

Statistics

- 1. For continuous variables, differences between the two groups were evaluated using the unpaired t-test or Mann-Whitney rank test. Data were expressed as mean ± standard deviations.
- 2. For discrete variables, differences were expressed as counts and percentages and analyzed with the $\chi 2$ or Fisher's exact test between two groups.
- 3. To adjust for any potential confounders, multiple logistic regression model analysis was performed.
- 4. Various clinical outcomes were estimated with the Kaplan-Meier method, and differences between the groups were compared with the log-rank test.
- 5. For all analyses, a two-sided p < 0.05 was considered statistically significant. All data were processed with SPSS 20.0 (IBM Corp., Armonk, NY, USA).

Results (1)

Table. Baseline Clinical, Angiographic Characteristics

Variables Total (n=5,890) Sex, male 2703 (45.9)		Variables	Total (n=5,890)	Variables	Total (n=5,890)
		Medication history		CAS site	
Age, years	55.3 <u>+</u> 12.4	Calcium channel blockers	2570 (43.6)	Left main	8 (0.2)
Blood pressure, mmHg		Diltiazem	315 (5.3)	Left anterior descending	3181 (93.7)
Systolic	135 ± 21	Nitrate	279 (4.7)	Left circumflex	1300 (38.3)
Diastolic	78 ± 12	Trimetazidine	176 (2.9)	CAS location	
Heart rates, bpm	71 <u>+</u> 13	Nicorandil	143 (2.4)	Mid to distal	1296 (38.1)
Body mass index	24 ± 3	β-blockers	270 (4.5)	Proximal; to distal	1409 (41.5)
Risk factors		Diuretics	292 (4.9)	Proximal only	246 (7.2)
Hypertension	2694 (45.7)	ARB	442 (7.5)	Mid only	380 (11.1)
Diabetes mellitus	928 (15.7)	ACEI	82 (1.3)	Distal only	63 (1.8)
New-onset diabetes	210 (3.5)	Statins	488 (8.2)	Diffuse CAS (>20 mm)	2913 (85.8)
Insulin	100 (1.6)	Coronary angiography		Multi-vessel CAS	1129 (33.2)
Medication	594 (10.0)	Insignificant stenosis		EKG Change	255 (4.3)
Dietary	71 (1.2)	Minimal (< 30%)	2834 (48.1)	ST-segment elevation	80 (1.3)
Dyslipidemia	1757 (29.8)	Mild (30-50%)	481 (8.1)		
History smokers	1699 (28.8)	Moderate (50-70%)	367 (6.2)		
Current smokers	1213 (20.5)	Myocardial bridge (>30%)	853 (14.4)		
History alcoholics	2050 (34.8)	CAS (after ACH provocation	on test)		
Current alcoholics	1881 (31.9)	Significant CAS (>70%)	3394 (57.6)		

Data are presented as N (%) or mean ± standard deviation. ARB: angiotensin receptor blockers, ACEI: angiotensin converting enzyme inhibitors, CAS: Coronary artery spasm, ACH: acetylcholine, EKG: electrocardiogram, MACE: major adverse cardiac events.

Results (2) Table. Various Clinical Outcomes at 5-year

Total (n=5,890)		
309 (8.1)		
38 (0.9)		
16 (0.4)		
6 (0.1)		
12 (0.3)		
8 (0.2)		
15 (0.4)		

Data are presented as N (%). MACE: major adverse cardiac events, CAS: coronary artery spasm.

Results (3)

Cumulative 5-Year Clinical Outcomes in Patients without Significant Coronary Artery Disease

CAS: Coronary artery spasm, MB: myocardial bridge, ICS: insignificant coronary stenosis.

Results (4)

Cumulative 5-Year Clinical Outcomes in Patients without Significant Coronary Artery Disease

CAS: Coronary artery spasm, MB: myocardial bridge, ICS: insignificant coronary stenosis.

Results (5)

Table. Predictors of major adverse cardiac events (MACE) after multivariable Coxproportional hazard model analysis

	Total	MACE up to 5 years		
Variables, N (%)		Incidence, %	Hazard Ratio	P-value
			(95%CI)	
Sex	5890	38 (0.8%)		0.297
Male	2703	21 (1.1%)	1.527 (0.688 - 3.385)	
Female	3187	17 (0.8%)	0.655 (0.295 - 1.452)	
Age, years	5890	55.3 ± 12.4	1.294 (1.099 - 1.524)	0.002
Hypertension	2694	24 (1.3%)	1.275 (0.632 - 2.572)	0.497
Diabetes mellitus	928	11 (1.8%)	1.338 (0.645 - 2.773)	0.433
Dyslipidemia	1757	16 (1.3%)	1.428 (0.735 - 2.776)	0.292
Cerebrovascular accidents	122	3 (3.1%)	2.062 (0.610 - 6.969)	0.244
Peripheral artery disease	156	1 (0.7%)	0.382 (0.049 - 2.967)	0.358
Chronic kidney insufficiency	40	0 (0.0%)	-	0.975
Current smokers	1213	12 (1.4%)	2.239 (0.959 - 5.228)	0.062
Alcohol drinkers	1881	9 (0.7%)	0.549 (0.236 - 1.277)	0.164
Myocardial bridge	853	6 (1.0%)	1.076 (0.447 - 2.592)	0.869
Coronary artery spasm	3394	24 (1.0%)	1.040 (0.529 - 2.041)	0.909
Insignificant stenosis				0.006
30 - 50%	481	7 (2.7%)	2.629 (1.098 - 6.291)	0.030
50 - 70%	367	8 (3.7%)	3.482 (1.501 - 8.074)	0.004

MACE was defined as the composite of total death, MI, and coronary revascularization. MACE: major adverse clinical events, CI: confidence interval

Results (6)

Table. Predictors of sustained angina pectoris after multivariable Cox-proportional hazard model analysis

		Sustained Angina Pectoris up to 5 years			
Variables, N (%)	Total	Incidence, %	Hazard Ratio (95%CI)	P-value	
Sex	5890	309 (8.1)		0.243	
Male	2703	153 (8.7%)	1.173 (0.896 - 1.535)		
Female	3187	156 (7.6%)	0.852 (0.651 - 1.115)		
Age, years	5890	55.3 ± 12.4	1.059 (1.005 - 1.115)	0.031	
Hypertension	2694	157 (8.8%)	0.933 (0.731 - 1.191)	0.582	
Diabetes mellitus	928	58 (9.8%)	1.038 (0.773 - 1.394)	0.803	
Dyslipidemia	1757	117 (10.1%)	1.270 (0.994 - 1.622)	0.055	
Cerebrovascular accidents	122	12 (12.7%)	1.417 (0.784 - 2.561)	0.247	
Peripheral artery disease	156	22 (15.8%)	1.415 (0.880 - 2.276)	0.151	
Chronic kidney insufficiency	40	2 (6.3%)	0.602 (0.147 - 2.454)	0.479	
Current smokers	1213	73 (8.6%)	1.159 (0.849 - 1.582)	0.351	
Alcohol drinkers	1881	81 (6.9%)	0.740 (0.556 - 0.985)	0.039	
Myocardial bridge	853	63 (10.0%)	1.390 (1.050 - 1.840)	0.021	
Coronary artery spasm	3394	208 (9.6%)	1.398 (1.097 - 1.782)	0.007	
Insignificant stenosis				< 0.001	
30 - 50%	481	32 (13.3%)	1.736 (1.188 - 2.534)	0.004	
50 - 70%	367	49 (22.0%)	3.502 (2.530 - 4.847)	< 0.001	

MACE was defined as the composite of total death, MI, and coronary revascularization. MACE: major adverse clinical events, CI: confidence interval

Summary (1)

- 1) Among the patients with chest pain, but without significant CAD, **68.3%** had <u>CAS</u>, <u>MB</u>, and/or <u>ICS</u>.
- Of these patients, those with <u>MACE</u>, composite of allcause deaths, MI, or revascularization were rare (0.9%), but <u>sustained AP</u> were frequent (8.1%) within the 5year follow-up.

Summary (2)

- 3) On multivariable Cox-proportional hazard model analysis, the main **predictors of MACE** were aging and ICS; additionally, aging and ICS, along with MB and CAS were the main **predictors of sustained AP** at the 5-year follow-up.
- 4) In particular, both <u>aging and ICS</u> were seen as the strongest risk factors for MACE and sustained AP.

Limitations

- It is a non-randomized trial analysis conducted at a single center.
- The results were analyzed retrospectively and multivariable Coxproportional regression analysis was performed to minimize the confounding factors; this might have influenced the results.
- We could not adjust all the limiting factors that were not shown through medical records or collected through telephone contact.
- Finally, we could not gather any detailed follow-up data on antiangina medication during the follow-up. However, all patients received anti-angina medication until they were free of angina symptoms and in clinical remission, although the medication type and duration were based on the discretion of the individual physicians.

Conclusion

- In patients without significant CAD, aging and ICS (<70%) are strong predictors for future long-term MACE.
- Aging, CAS, and MB are also strongly associated with future AP.
- Further well-designed and longer-term followup studies are needed to obtain more accurate answers to all these questions.

Course Director Seung-Woon Rite (Korse Univ.)

Honorary Course Director

Dong Joo Ch (New Korea Hosp.) Wan Heum Shim (Good Morning Hosp.) Tae Hoon Ahn (Gachon Univ.) Myung-Ho Jeong (Chonnam National Univ.) Junghan Yoon (YeonSel Univ. Wonju Hosp.)

Course Co-Director

Cheol-Ung Chol (Konse Unix.) Yong Hoon Kim (Kangwon National Univ.) Seng Ho Perk (Soonahunheyng Univ.) Woong Gil Chol (Kontauk Univ.) Ae-Young Her (Kangwon National Univ.) Won Ho Kim (Euiji Univ.) Ji Young Park (Euiji Univ.) Ji-Hoon Ahn (Soonahunhyang Univ.) Ju-Yeol Baek (Cheong-Ju St. Mary's hosp.)

Organized by CIRI (Cardiovascular Intervention Research Institute), Korea University Gura Hospital, Secul, Korea Sponsored by Cardiovascular Center, Korea University Guro Hospital, Secul, Korea

