

Stable angina, medical treatment enough?

From COURAGE, ORBITA and ISCHEMIA

Chungbuk National University Hospital, Chungbuk Regional CV center Sang Yeub Lee, MD, PhD

CHUNGBUK NATIONAL UNIVERSITY HOSPITAL

PCI classification

Cosmetic

Angioplasty

Non-Viable

Asymptomatic

Small ischemic

Myocardium,

FFR > 0.80,

No Evidence of ischemia

Symptomatic

Angioplasty

For Angina relieve

Survival

Angioplasty

Left main and 3 vessel

disease

For Large ischemic burden

PCI classification

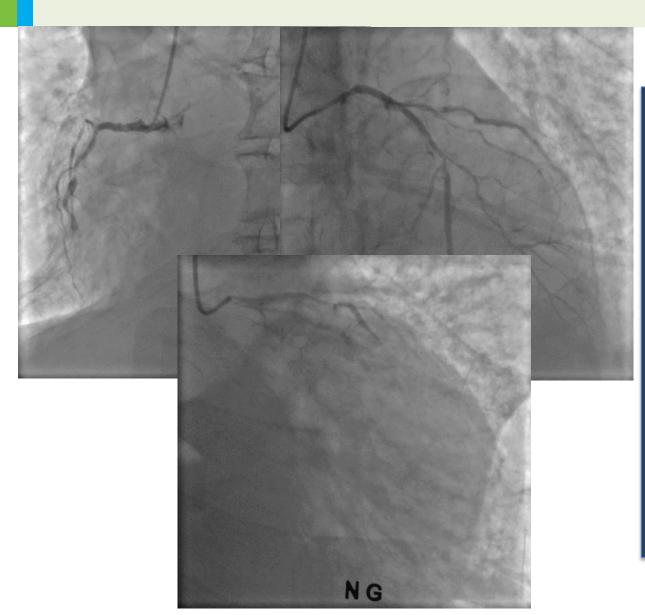
Cosmetic Angioplasty

Non-Viable

Asymptomatic

Small ischemic

Myocardium,


FFR > 0.80,

No Evidence of ischemia

PCI classification

Survival Angioplasty

Left main and 3 vessel
disease
For Large ischemic burden

Stable angina with myocardial ischemia

Cosmetic

Angioplasty

Non-Viable

Asymptomatic

Small ischemic

Myocardium,

FFR > 0.80,

No Evidence of ischemia

Symptomatic

Angioplasty

For Angina relieve

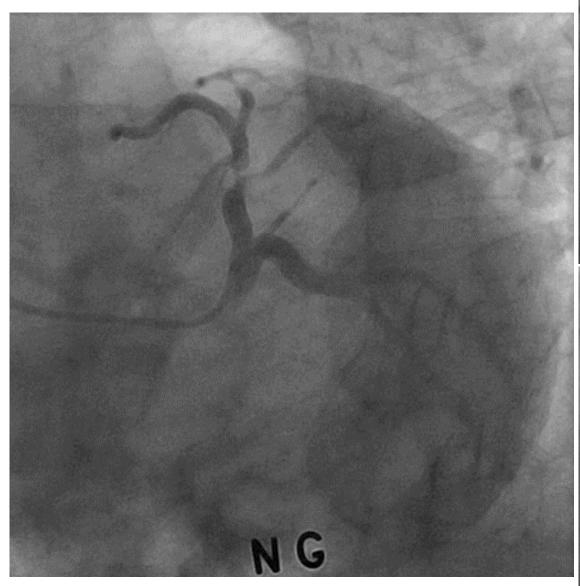
Survival

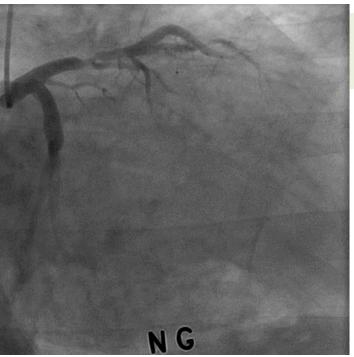
Angioplasty

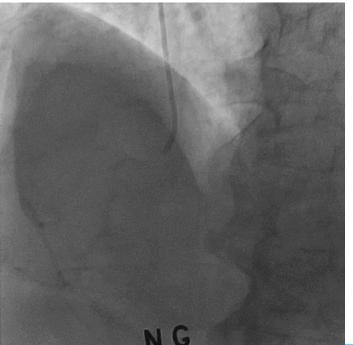
Left main and 3 vessel

disease

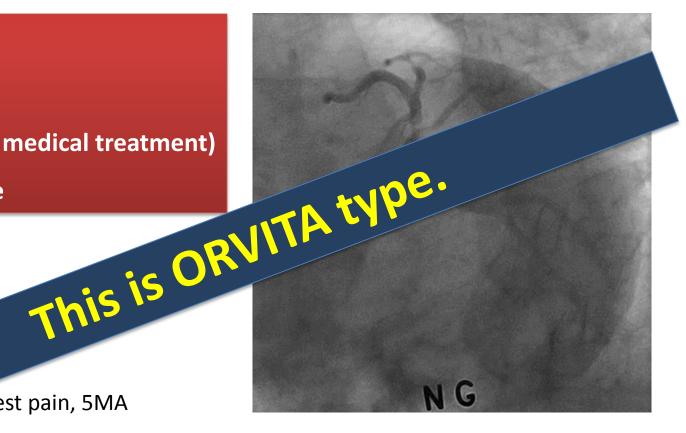
For Large ischemic burden




ORVITA type patient: M/60


- 60-year-old male
- very active patient
- Reproducible chest pain, 5MA
- exercise ECG test : ST depression in leads V4-6
- stress echocardiography : hypookinetic apical anterior and anteroseptal myocardial segments

M/60



How to treat?

- 1. CABG
- 2. PCI
- 3. OMT (optimal medical treatment)
- 4. None of above

- 60-year-old
- mie chest pain, 5MA
- exercise ECG test: ST depression in leads V4-6
- stress echocardiography: hypookinetic apical anterior and anteroseptal myocardial segments

COURAGE (NEJM 2007) and ORBITA (Lancet 2017)

Results and Controversy Surrounding Two Key Trials,
 COURAGE (NEJM 2007) and ORBITA (Lancet 2017)

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

APRIL 12, 2007

VOL. 356 NO. 15

Optimal Medical Therapy with or without PCI for Stable Coronary Disease

William E. Boden, M.D., Robert A. O'Rourke, M.D., Koon K. Teo, M.B., B.Ch., Ph.D., Pamela M. Hartigan, Ph.D., David J. Maron, M.D., William J. Kostuk, M.D., Merril Knudtson, M.D., Marcin Dada, M.D., Paul Casperson, Ph.D., Crystal L. Harris, Pharm.D., Bernard R. Chaitman, M.D., Leslee Shaw, Ph.D., Gilbert Gosselin, M.D., Shah Nawaz, M.D., Lawrence M. Title, M.D., Gerald Gau, M.D., Alvin S. Blaustein, M.D., David C. Booth, M.D., Eric R. Bates, M.D., John A. Spertus, M.D., M.P.H., Daniel S. Berman, M.D., G.B. John Mancini, M.D., and William S. Weintraub, M.D., for the COURAGE Trial Research Group*

THE LANCET

02 November 2017

Percutaneous coronary intervention in stable angina (ORBITA) a double-blind, randomised controlled trial

Rasha Al-Lamee, , David Thompson, Hakim-Moulay Dehbi,

COURAGE trial

ESTABLISHED IN 1812

APRIL 12, 2007

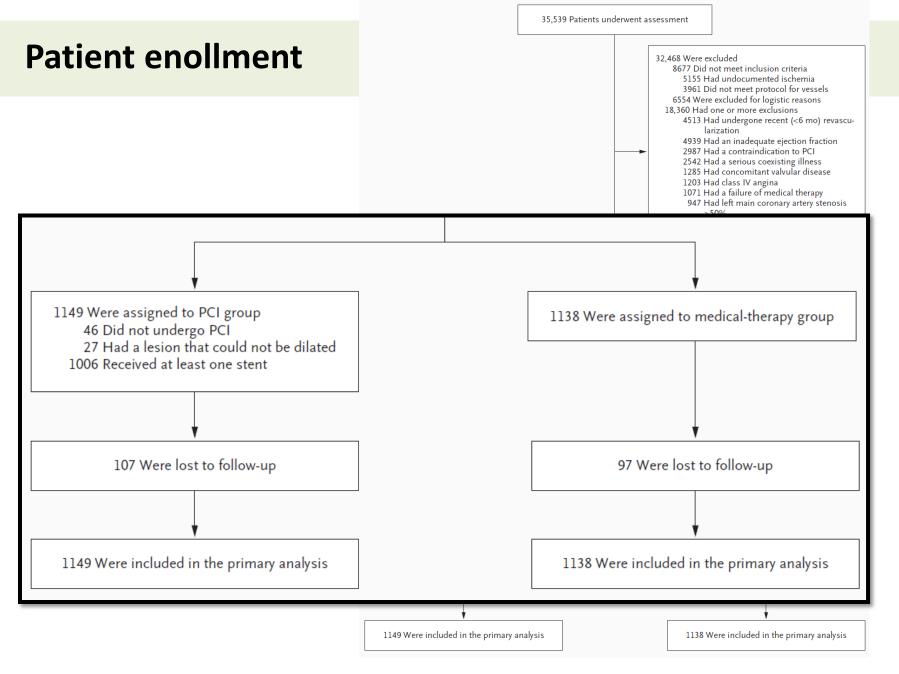
VOL. 356 NO. 15

COURAGE: Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation

Optimal Medical Therapy with or without PCI for Stable Coronary Disease

William E. Boden, M.D., Robert A. O'Rourke, M.D., Koon K. Teo, M.B., B.Ch., Ph.D., Pamela M. Hartigan, Ph.D., David J. Maron, M.D., William J. Kostuk, M.D., Merril Knudtson, M.D., Marcin Dada, M.D., Paul Casperson, Ph.D., Crystal L. Harris, Pharm.D., Bernard R. Chaitman, M.D., Leslee Shaw, Ph.D., Gilbert Gosselin, M.D., Shah Nawaz, M.D., Lawrence M. Title, M.D., Gerald Gau, M.D., Alvin S. Blaustein, M.D., David C. Booth, M.D., Eric R. Bates, M.D., John A. Spertus, M.D., M.P.H., Daniel S. Berman, M.D., G.B. John Mancini, M.D., and William S. Weintraub, M.D., for the COURAGE Trial Research Group*

- Sponsored by Department of VA Cooperative Study Program
- Randomized, multicenter
- Subjects entered from 1999-2004
- Follow-up period of 2.5 to 7.0 years (median 4.6)
- Population


Patients with objective evidence of myocardial ischemia and significant coronary disease

2287 subjects from 50 sites in US and Canada, randomized 1:1

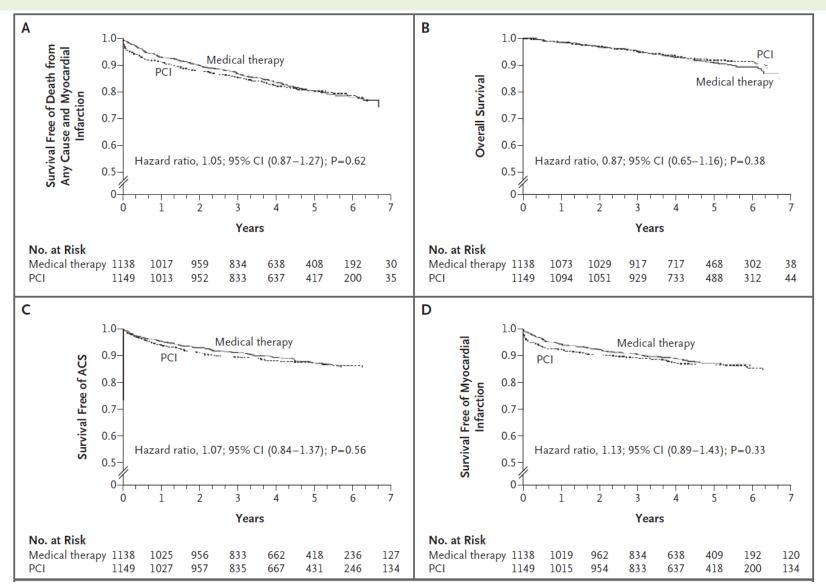
1149 to undergo PCI with optimal medical therapy

1138 to receive optimal medical therapy alone

	Characteristic	PCI Group (N=1149)	Medical-Therapy Group (N=1138)	P Value	
Baseline Cl	Demographic				eristics
Daseille Ci		61.5±10.1	61.8±9.7	0.54	ELISTICS
	Sex — no. (%) Male	979 (85)	968 (85)	0.95	
	Female	169 (15)	169 (15)		
	Race or ethnic group — no. (%)÷			0.64	2.01
Angina (CCS class) — no	o. (%)				0.24
0		135	(12)	148 (1	3)
1		340	(30)	341 (3	0)
II		409	(36)	425 (3	7)
III		261	(23)	221 (1	9)
Stress test:		-			<u> </u>
Total patients — no. (%)		972 (85)	977 (86) 0.84
Treadmill test — no. (%)		555 (553 (
Duration of treadmill		7.0±		6.9±	
Pharmacologic stress —	no. (%)	417 (43)	424 (43)
Echocardiography — no. (%		63 (54 (6)
Nuclear imaging — no. (%)		685 (70)	708 (72) 0.59
Single reversible defect		154 (22)	161 (23) 0.09
Multiple reversible defec	ts∫	444 (65)	483 (68) 0.09
	Treadmill test — no. (%)	555 (57)	553 (57)		
	Duration of treadmill test — min	7.0±2.7	6.9±2.3	0.43	
	Pharmacologic stress — no. (%)	417 (43)	424 (43)		
	Echocardiography — no. (%) Nuclear imaging — no. (%)	63 (6) 685 (70)	54 (6) 708 (72)	0.59	
	Single reversible defects	154 (22)	161 (23)	0.09	N Engl J Med 2007;356:1503-16
	Multiple reversible defects§	444 (65)	483 (68)	0.09	

Clinical Status, Risk and Lifestyle Factors, and Use of Medication

Variable		PCI Group	(N=1149)		Med	lical-Therapy	70±0.43 70±0.52 70±0.6 150±1.10 145±1.30 140±1.6			
	Baseline	1 Yr	3 Yr	5 Yr	Baseline	1 Yr	3 Yr	5 Yr		
				media	an ±SE					
Clinical status										
No. evaluated	1148	1031	820	423	1137	1010	824	406		
Blood pressure — mm Hg										
Systolic	131±0.77	126±0.64	125±0.68	124±0.81	130±0.66	124±0.73	123±0.78	122±0.92		
Diastolic	74±0.33	72±0.35	70±0.52	70±0.81	74±0.33	70±0.43	70±0.52	70±0.65		
Cholesterol — mg/dl										
Total	172±1.37	156±1.17	148±1.13	143±1.74	177±1.41	150±1.10	145±1.30	140±1.64		
HDL	39±0.39	42±0.39	43±0.47	41±0.67	39±0.37	41±0.42	42±0.49	41±0.75		
LDL	100±1.17	84±0.97	76±0.85	71±1.33	102±1.22	81±0.86	74±0.92	72±1.21		
Triglycerides — mg/dl	143±2.96	129±2.74	124±2.79	123±4.13	149±3.03	133±2.90	126±2.84	131±4.70		
Body-mass index	28.7±0.18	28.5±0.19	29.0±0.21	29.0±0.34	28.9±0.17	29.0±0.19	29.3±0.21	29.5±0.31		
Angina-free — no. (%)†	135 (12)	680 (66)	602 (72)	316 (74)	148 (13)	595 (58)	558 (67)	296 (72)		
Risk or lifestyle factor										
Current smoker — no. (%)	260 (23)	206 (20)	156 (19)	74 (17)	259 (23)	206 (20)	160 (19)	80 (20)		
AHA Step 2 diet — no. (%)	626 (55)	803 (78)	631 (77)	326 (77)	613 (54)	800 (79)	660 (80)	312 (77)		
Moderate activity — no. (%)‡	290 (25)	473 (46)	351 (42)	179 (42)	279 (25)	433 (43)	330 (40)	146 (36)		
Glycated hemoglobin in patients with diabetes										
No. evaluated	319	239	197	97	336	286	233	123		
Level — %	6.9±0.1	7.1±0.1	7.1±0.1	7.1±0.1	7.1±0.1	7.0±0.1	7.1±0.1	7.1±0.1		
Medication										
No. evaluated	1147	1044	837	428	1138	1028	838	417		
ACE inhibitor — no. (%)	669 (58)	668 (64)	536 (64)	284 (66)	680 (60)	633 (62)	522 (62)	260 (62)		
ARB — no. (%)	48 (4)	93 (9)	104 (12)	49 (11)	54 (5)	99 (10)	108 (13)	67 (16)		
Statin — no. (%)	992 (86)	972 (93)	780 (93)	398 (93)	1014 (89)	972 (95)	769 (92)	386 (93)		
Other antilipid — no. (%)	89 (8)	236 (23)	324 (39)	211 (49)	94 (8)	253 (25)	321 (38)	224 (54)		
Aspirin — no. (%)	1097 (96)	995 (95)	792 (95)	408 (95)	1077 (95)	977 (95)	796 (95)	391 (94)		
Beta-blocker — no. (%)	975 (85)	887 (85)	705 (84)	363 (85)	1008 (89)	916 (89)	724 (86)	357 (86)		
Calcium-channel blocker — no. (%) \S	459 (40)	415 (40)	360 (43)	180 (42)	488 (43)	501 (49)	418 (50)	217 (52)		
Nitrates — no. (%)¶	714 (62)	553 (53)	396 (47)	173 (40)	825 (72)	690 (67)	511 (61)	237 (57)		


N Engl J Med 2007;356:1503-16

Primary and Secondary Outcomes

Outcome	Numb	er of Events	Hazard Ratio (95% CI)†	P Value†	Cumulative	Rate at 4.6 Years
	PCI Group	Medical-Therapy Group			PCI Group	Medical-Therapy Group %
Death and nonfatal myocardial infarction;	211	202	1.05 (0.87–1.27)	0.62	19.0	18.5
Death∫	68	74				
Periprocedural myocardial infarction	35	9				
Spontaneous myocardial infarction	108	119				
Death, myocardial infarction, and stroke	222	213	1.05 (0.87–1.27)	0.62	20.0	19.5
Hospitalization for ACS	135	125	1.07 (0.84–1.37)	0.56	12.4	11.8
Death∫	85	95	0.87 (0.65-1.16)	0.38	7.6	8.3
Cardiac	23	25				
Other	45	51				
Unknown	17	19				
Total nonfatal myocardial infarction	143	128	1.13 (0.89–1.43)	0.33	13.2	12.3
Periprocedural myocardial infarction	35	9				
Spontaneous myocardial infarction	108	119				
Death, myocardial infarction, and ACS	294	288	1.05 (0.90–1.24)	0.52	27.6	27.0
Stroke	22	14	1.56 (0.80–3.04)	0.19	2.1	1.8
Revascularization (PCI or CABG)¶	228	348	0.60 (0.51-0.71)	<0.001	21.1	32.6

Kaplan-Meier Survival Curves

Conclusion of Authors

- "Our findings reinforce existing clinical practice guidelines, which state that PCI can be safely deferred in patients with stable CAD ... provided that intensive, multifaceted medical therapy is instituted and maintained."
- "Although the addition of PCI to optimal medical therapy reduced the prevalence of angina, it did not reduce long-term rates of death, nonfatal MI and hospitalization for ACS."

Concerns Raised in Letters to the NEJM Editor

- Authors overestimated number of elective procedures results reflect findings in only small minority of patients with CAD
- Patient-selection bias (35,539 screened, 2287 randomized)
- PCI methodology (not all vessels stented, not drug-eluting stents)
- Failed to stratify by ischemic burden
- Analyzed ITT, but lots of cross-over (33% subsequent revascularization in MT group)
- Possible under-treatment of clopidogrel in those who received stents

Truth and Consequences of COURAGE

Expedited publication in JACC by 14 authors

- Examine the construct, execution, and observations of the COURAGE trial (the "truth")
 - Findings are nothing new
 - Subject selection, low levels of angina
 - Underpowered (low event rate)
 - Surprisingly high rate of "crossover"
 - Non-optimal performance of PCI; underuse of DES
 - Use of all cause mortality might have obscured important differences
 - Disparity in outcomes based on where procedure was performed
 - Unrealistically high levels of compliance with MT

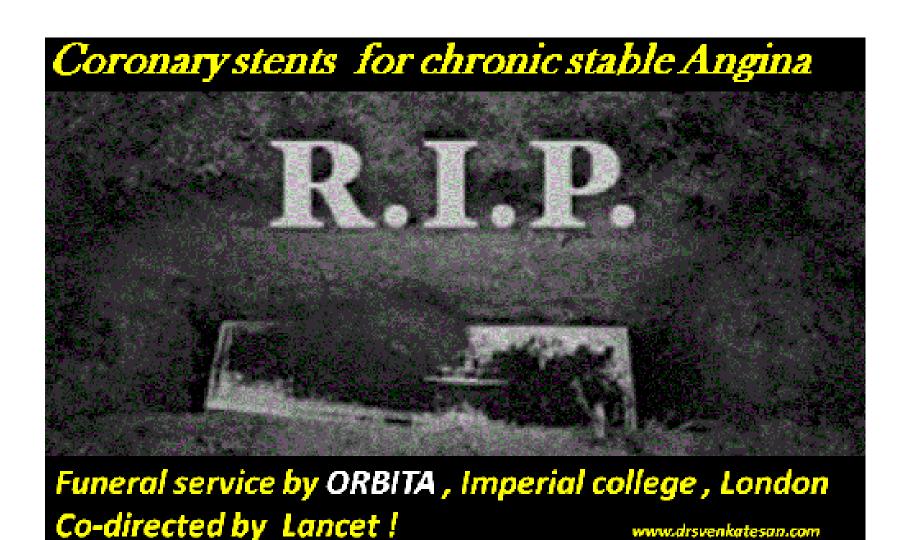
Summaries of trials comparing PCI vs OMT for SA

- No difference in mortality and MI
- Confusion in angina relief and QOL

Trial (Ref. #)	Mortality and MI	Angina Relief	wline,	repeat Revascularization
RITA-2 (7)	No difference	Angina Relief PCI S NETE UX PCI	ייטן	PCI
ACME (8)	No difference	ere w.	PCI	PCI
ACME-2 (16)	No differen	c Mc.	PCI	NA
MASS (9)	sirt in	J	NA	No difference
MASS-II (11)	All	PCI	PCI	No difference
AVERT (1	rence	PCI	PCI	No difference
TIME	No difference	PCI	PCI	PCI
COURA	No difference	No difference	PCI	PCI

ORBITA

THE LANCET


02 November 2017

Percutaneous coronary intervention in stable angina (ORBITA) a double-blind, randomised controlled trial

Rasha Al-Lamee, , David Thompson, Hakim-Moulay Dehbi,

Stents... Rest in peace

Background of ORBITA trial

ORBITA: Objective Randomized Blinded Investi THE LANCET gation with Optimal Medical Therapy of Angio plasty in Stable Angina

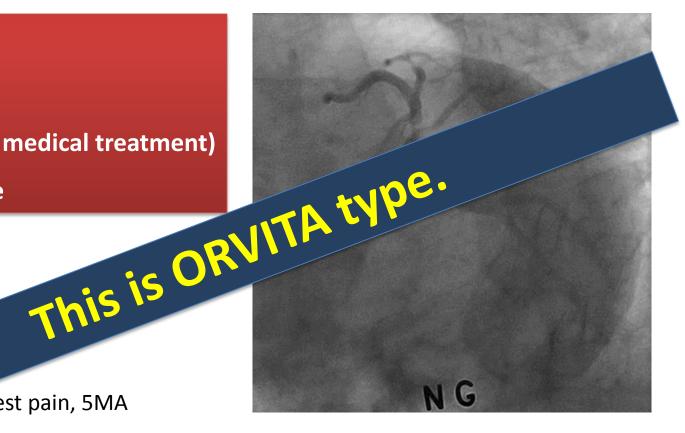
02 November 2017

Percutaneous coronary intervention in stable angina (ORBITA) a double-blind, randomised controlled trial

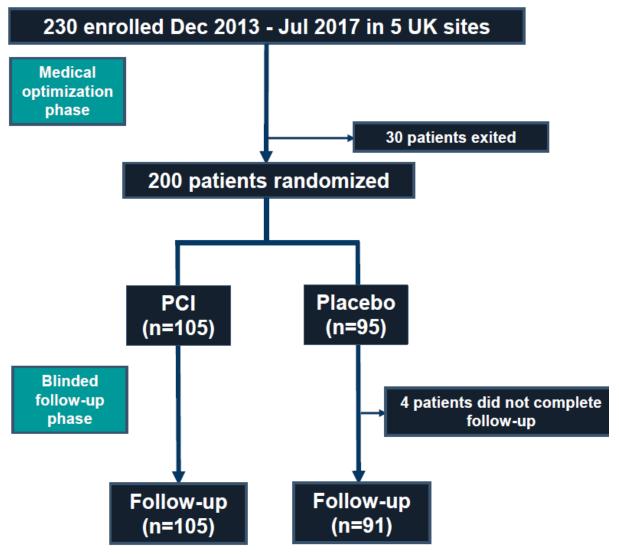
Rasha Al-Lamee, , David Thompson, Hakim-Moulay Dehbi,

- Data from unblinded randomized trials show significant improvement in exercise time, angina relief, QOL improvement from PCI
- Placebo effects known to be larger for invasive treatments
- Cardiologists resistant to idea of placebo-controlled trial
- Widespread perception that PCI unquestionably improves angina
- Might be unethical to expose patients to invasive placebo procedure
- Essential to identify true efficacy of intervention

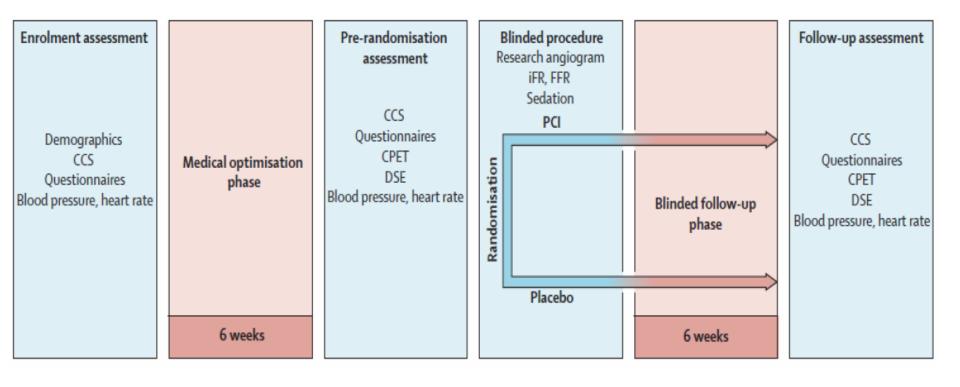
Overview of Trial


- Sponsored by NIHR Research Centre (investigator-initiated)
- Multicenter (UK), randomized, double-blind, sham placebo procedure controlled trial
- 2014 through 2017
- Goal: to assess the efficacy of PCI compared with a sham placebo procedure for angina relief among patients with stable angina

How to treat?


- 1. CABG
- 2. PCI
- 3. OMT (optimal medical treatment)
- 4. None of above

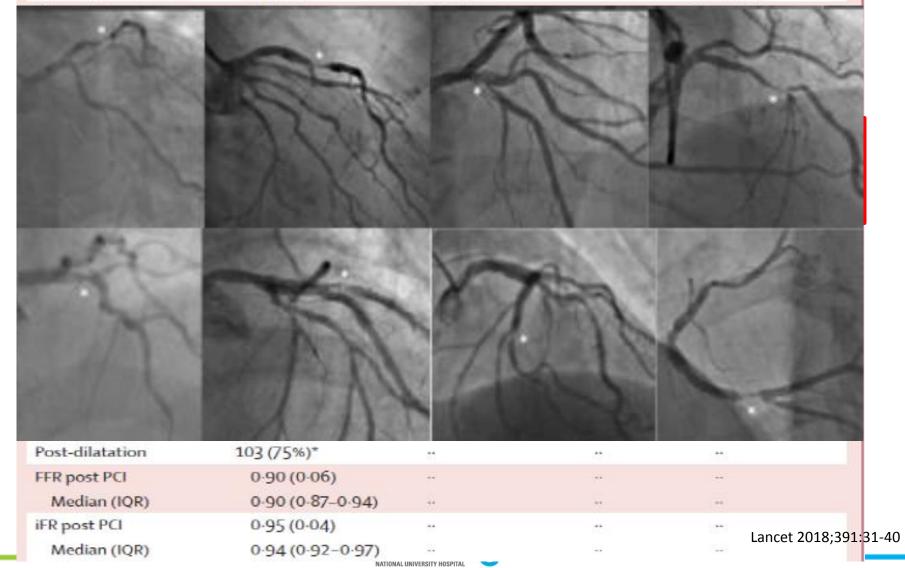
- 60-year-old
- mie chest pain, 5MA
- exercise ECG test: ST depression in leads V4-6
- stress echocardiography: hypookinetic apical anterior and anteroseptal myocardial segments


ORBITA trial

Study flow

6weeks and 6weeks

Baseline


	PCI (n=105)	Placebo (n=95)	All (n=200)
Age (years)	65.9 (9.5)	66-1 (8-4)	66-0 (9-0)
Male	74 (70%)	72 (76%)	146 (73%)
BMI (kg/m²)	28-0 (4-7)	29-5 (5-1)	28-7 (5-0)
Diabetes	15 (14%)	21 (22%)	36 (18%)
Hypertension	72 (69%)	66 (69%)	138 (69%)
Hyperlipidaemia	81 (77%)	62 (65%)	143 (72%)
Current smoker	11 (10%)	15 (16%)	26 (13%)
Previous myocardial infarction	5 (5%)	7 (7%)	12 (6%)
Previous PCI	10 (10%)	15 (16%)	25 (13%)
Left ventricle systolic functi	on		
Normal	98 (93%)	85 (89%)	183 (92%)
Mild impairment	3 (3%)	7 (7%)	10 (5%)
Moderate impairment	4 (4%)	3 (3%)	7 (4%)
CCS class			
I	2 (2%)	3 (3%)	5 (3%)
II	64 (61%)	54 (57%)	118 (59%)
III	39 (37%)	38 (40%)	77 (39%)
Angina duration (months)	9.5 (15.7)	8-4 (7-5)	9.0 (12.5)

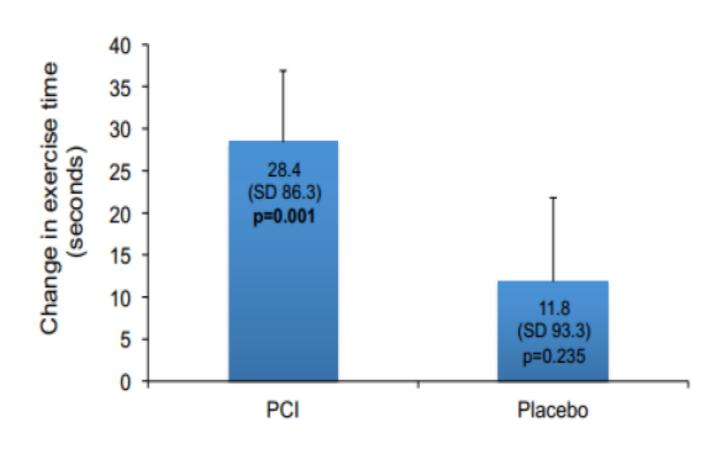
Data are mean (SD) and n (%). BMI=body-mass index. PCI=percutaneous coronary intervention. CCS=Canadian Cardiovascular Society.

Table 1: Baseline characteristics

Lancet 2018;391:31-40

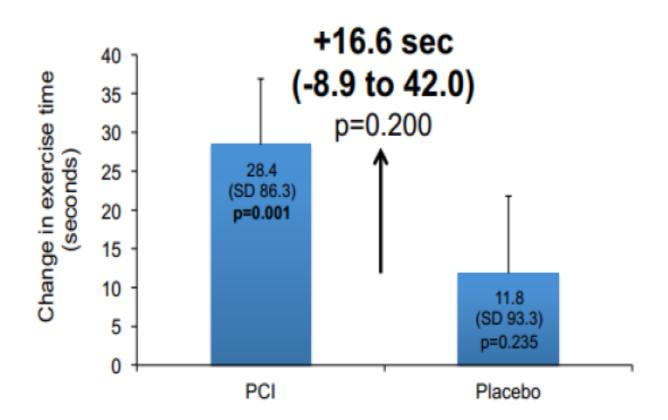
	PCI (n=105)	Placebo (n=95)	p value (PCI vs placebo)	All (n=200)
Procedural time (min)	90 (27)	61 (17)	<0.0001	76 (27)
Vessel name	44	44	0.509	**
Left anterior descending	72 (69%)	66 (69%)	**	138 (69%)
Right coronary artery	17 (16%)	15 (16%)	2	32 (16%)

Procedural demographics: Sham procedure

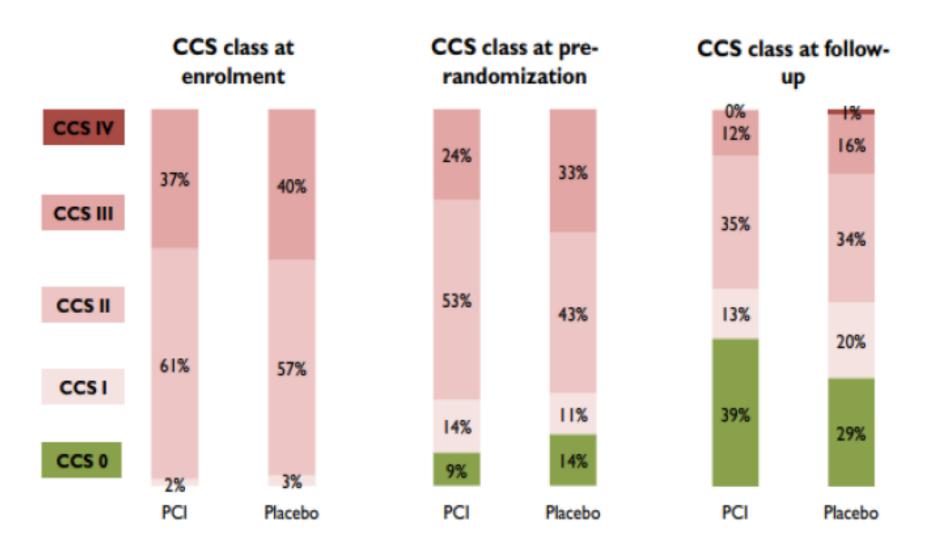


Sham procedure

	PCI n = 105	Placebo n = 95	Р
Procedural time (min)	90 (27)	61 (17)	<0.0001
Vessel			
LAD	72 (69%)	66 (69%)	
RCA	17 (16%)	15 (16%)	
Circumflex	9 (9%)	10 (11%)	

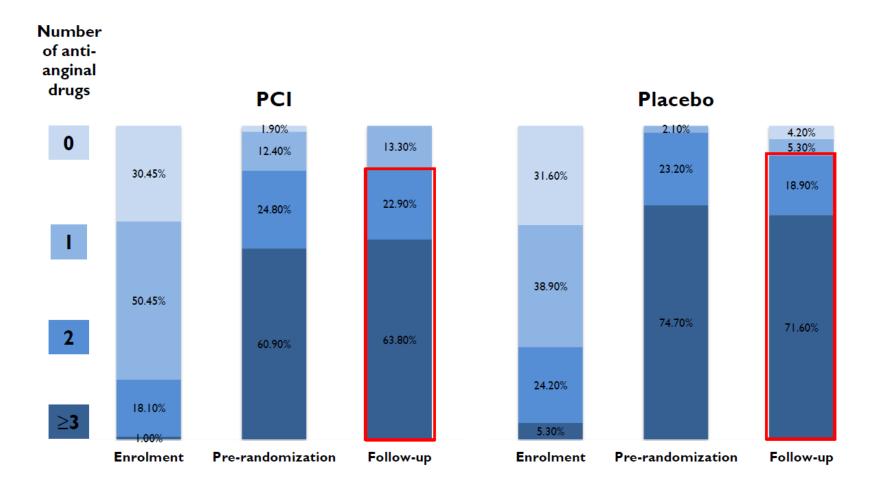


Primary endpoint: change in total exercise time



Change of total exercise time

Secondary EP: CCS class improved in both groups



Secondary EP: blinded evaluation of ischemia reduction

Peak stress wall motion index score	PCI n = 80	Placebo n = 57	
Pre-randomization	1.11 (0.18)	1.11 (0.18)	
Follow-up	1.03 (0.06)	1.13 (0.19)	
Δ (Pre-randomization to follow-up)	-0.08 (0.17)	0.02 (0.16)	
	p<0.0001	p=0.433	
Difference in Δ between	-0.09 (-0.15 to -0.04)		
arms	p=0.0011		

Medical therapy opitimization

Secondary EP No difference in Sx improvement or quality of life

Physical limitation score (SAQ)	
Difference in Δ between arms	2.4 (-3.5 to 8.3)
	p=0.420
Angina frequency score (SAQ)	
Difference in Δ between arms	4.4 (-3.3 to 12.0)
	p=0.260
Quality of life (EQ-5D-5L)	
Difference in Δ between arms	0.00 (-0.04 to 0.04)
	p=0.994

Conclusion of ORBITA trial

- ORBITA is the first placebo-controlled randomized trial of PCI in stable angina.
- Area stenosis QCA 84.4%, FFR 0.69, iFR 0.76
- PCI was safe and physiologically effective
- PCI significantly reduced ischemic burden as assess by stress echo
- In the single vessel, angiographically guided trial there was no difference in exercise time increment between PCI and placebo.

Issue and limitation of ORBITA trial

 ORBITA raises the issue of whether the symptom relief of PCI in the specific setting of stable single-vessel CAD may be related at least in part to a placebo effect.

Limitations

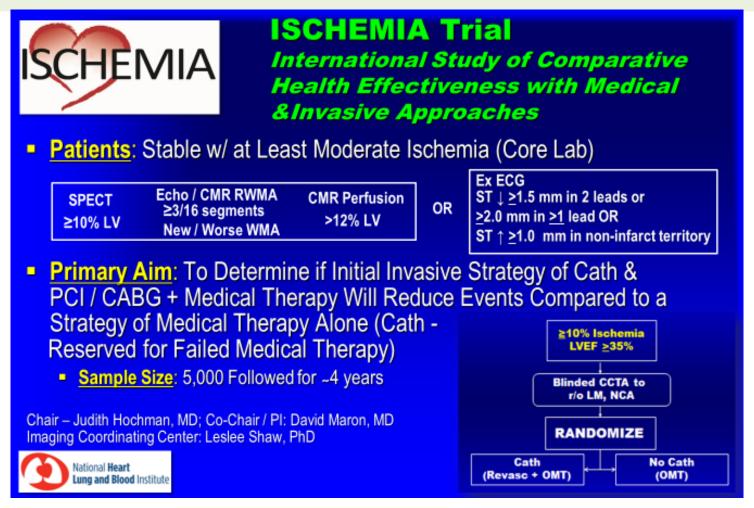
- short observation period (6 weeks)
- inclusion of patients with mild symptoms pre-randomization (CCS class 0–I in 25% of patients)
- group imbalance in ostial and proximal lesions (37 vs. 57%, P = 0.005)
- loss to follow-up after randomization
- insufficient power to detect a true difference.

Criticisms/Caveats in Cardiosource Articles

- Clinical consequences largely already supported by guidelines
- Trial was too small to answer such a big question
 - Lack of precision in estimating effect sizes
 - Changes in exercise time and Duke treadmill numerically higher in PCI group
- Subjects selection
 - Low frequency of multi-vessel CAD
 - Low angina burden prior to randomization
- Questionable choice of endpoint
 - Exercise time as primary endpoint
 - Short duration of F/U
- Less about lack of effect of PCI, and more about power of optimal medical therapy
 - Medical optimization phase more intensive than routine clinical practice
 - Patients prefer few medications

Gap in evidence

- It remains to be determined whether revascularization by PCI improves prognosis in patients with SCAD.
- The ISCHEMIA (International Study of Comparative Health Effectiveness With Medical and Invasive Approaches) study (NCT01471522) is currently recruiting
 5000 patients with SCAD and evidence of moderate-to-severe ischaemia detected by non-invasive imaging, who are randomized before coronary angiography to medical therapy or an invasive strategy to detect differences in the primary endpoint of death or MI.


Background of ISCHEMIA trial

Limitation of COURAGE trial

- 60% of patients: no ischemia or very mild ischemia on provocative testing
- new resting ST-T wave changes, ≥1 mm exertional ST segment changes, or ≥1 ischemic imaging defect
- permitted for patients with angina and ≥70% stenosis without any stress test requirement
- → electrocardiographic changes and small amounts of ischemia are suboptimal in predicting event risk and obstructive CAD severity
- → In a substudy within the COURAGE trial, serial nuclear imaging at baseline and 1-year post-randomization revealed that PCI with optimal medical therapy led to greater ischemia reductions compared with optimal medical therapy alone.

ISCHEMIA trial

More severe ischemia than COURAGE trial

Blinded CCTA – to rule out LM disease and no coronary artery disease

ESC guideline 2018

• Indications for revascularization in patients with stable angina or silent ischemia

Extent of CAD (a	Extent of CAD (anatomical and/or functional)		
For	Left main disease with stenosis >50%. 68-71	1	A
prognosis	Proximal LAD stenosis >50%. ^c 62.68,70,72	- 1	A
	Two- or three-vessel disease with stenosis >50% with impaired LV function (LVEF ≤35%).c 61,62,68,70,73-83		Α
	Large area of ischaemia detected by functional testing (>10% LV) or abnormal invasive FFR. ^{d 24,59,84–90}	1	В
	Single remaining patent coronary artery with stenosis >50%. ^c	1	С
For symptoms	Haemodynan with insufficial For Symptoms	1	A

Hemodynamically significant coronary stenosis in presence of limiting angina or angina equivalent, with insufficient response to optimal medical therapy
→ Class I, Evidence level of A

2018 ESC/EACTS Guidelines on Myocardial Revascularization

Conclusion

- The summary from prior SCAD trials was that an index strategy of optimal medical therapy alone was safe and equally effective as PCI with optimal medical therapy.
- The ORBITA study underlines the value of optimal medical therapy in the management of SCAD.
- But because of the limitation of prior trials and ORBITA study, it remains to be determined whether revascularization by PCI improves prognosis in patients with SCAD.
- The ISCHEMIA trial offers huge opportunities for imaging to be a core component and decision trigger for SIHD clinical management.

Will ORBITA change my practice?

Proceedings of EuroPCR 2018

Major arguments for a change in practice

- In patients with stable angina, PCI did not result in greater improvements in exercise times or chest pain frequency compared with a sham procedure and medical treatment.
- PCI did not result in improvement of quality of life.

Major arguments against a change in practice

- ORBITA demonstrated that PCI improves freedom from angina with a number needed to treat (NNT) of 5.
- ORBITA applies to patients with stable anginal symptoms and single-vessel disease and not to patients with acute coronary syndrome, left main or multivessel disease and might not reflect clinical reality.

