Platelet Function Measurements

Jin-Yeong Han, MD, PhD Department of Laboratory Medicine Dong-A University College of Medicine

OUTLINE

- Role of Platelets in Hemostasis
- Platelet Function Tests
- Future Directions

Platelet Plug Formation

Jennings LK. TH 2009;102:248-57

Endothelial Cells & Monocytes

Jennings LK. TH 2009;102:248-57

Platelet Function Tests

PFA-100 & 200 ®

Impact ®

Therapeutic Window Concept

P2Y₁₂ Receptor Reactivity

Tantry US et al. JACC 2013 (E pub)

Platelet Function Tests

- Traditionally used for aid in the diagnosis and management of patients with bleeding problems.
- Given the role in atherothrombosis, several instruments are now available as point-of-care (POC) assays.
- Some can be used to monitor antiplatelet therapy and assess risk of bleeding and thrombosis, although still needs guidelines.

Platelet Counting & Morphology

- Classically evaluated by hematology analyzers
- Impedance, optical or immunological methods
- EDTA-anticoagulated blood
- Blood smears (May-Grünwald-Giemsa)
- Electron microscopy

Platelet Counting & Morphology

Platelet Counting & Morphology

Platelet Aggregometry

- Still gold standard of platelet function testing
- Platelet aggregation is measured by analysis of the transmittance of light through a sample PRP
- Recently multichannel capability, computer operation, measuring secretion of nucleotides
- Nonphysiologic, influenced by many variables, requiring large blood volumes

Platelet Aggregometry

• Choice of agonists (SSC/ISTH, 2013)

- ADP: 2 uM
- Epinephrine: 5 uM
- Collagen: 2 ug/mL
- Thrombin receptor activating peptide (PAS1-AP): 10 uM
- Thromboxane A_2 mimetic (U46619): 1 uM
- Arachidonic acid: 1 mM
- Ristocetin: 1.2 mg/mL
- Higher concentration should be used if abnormal results with the indicated concentration of each agonist.

Platelet Aggregometry

- Shape change, length of lag phase, slope of aggregation, maximal amplitude or % aggregation, amplitude or % aggregation at the end, deaggregation, visual tracing, presence of 'secondary wave'
 - Completed more than 4 h after collection: comment
 - Establish appropriate reference intervals (SSC/ISTH, 2013)

Flow Cytometry

- On whole blood or PRP
- Small volume of blood
- Large panel of antibodies
- Direct or indirect immunofluorescence
- Single or double staining
- Intact or permeabilized cells

Flow Cytometry

Glanzmann Thrombasthenia diagnosis FACScan

Flow Cytometry

- Most common activation markers
 - P-selectin expression (α -granule secretion)
 - Conformational change in integrin α IIb β 3 into active state (measured by PAC-1)
 - Platelet-leukocyte conjugates
 - Phosphorylation of VASP (P2Y12 receptor activation)

Platelet Adhesion in Flux Conditions

- So far, used only in very specialized laboratories
- Devices now available
- Information on spreading and thrombus formation at different shear rates

Platelet Adhesion in Flux Conditions

Flow Microchamber (BioFlux-Labtech)

T-TAS (Total Thrombusformation Analysis System

Platelet Microparticles (PMP)

- Small (0.1-1 um diameter) anucleoid phospholipid vesicles released from different cells, platelets erythrocytes, leukocytes and endothelial cells
- PMP being the most abundant, 70-90% of all circulating MP
- Marked elevation in many disease states: Prothrombotic and inflammatory disorders (Autoimmune disorders, atherosclerosis, malignancies, infections, etc)

Platelet Microparticles

Feature	Exosomes	Microparticles	Apoptotic bodies	
Size	50-100 nm	50-100 nm 100-1,000 nm		
Sedimentation	100,000 g	20,000 g	16,000 g	
Origin	Multivesicular, internal compartments	Plasma membrane	Cellular fragments	
Release	Constitutive and/or cellular activation	Cellular activation and early apoptosis	Terminal apoptosis	
Annexin V binding capacity	Annexin V No/low Hi binding capacity		High	
Marker proteins	Tetraspan protein CD63	Integrins, selectins, other antigen of parental cell	Histones	

Platelet Microparticles

Platelet Microparticles

ISTH SSC Vascular Biology Workshop 3 Standardization of Microparticle Enumeration Across Different Flow Cytometry Platforms

~ Overall 36/46 (78.3%) Labs Qualified

[K]	FS	INT	LOG
[++]	1.0	11 4 1	LOO

[II] I O I						
Region	Number	%Total	%Gated	X-Mean	HP X-CV	Y-Mean
ALL	4077	80.65	100.00	26.9	0.34	###
E	2707	53.55	66.40	10.1	1.37	###
F	1365	27.00	33.48	60.2	0.34	###

[Ungated] SS INT LOG/FS INT LOG						
Region	Number	%Total	%Gated	X-Mean	HP X-CV	Y-Mean
ALL	26757	100.00	100.00	7.52	3.63	30.1
G	641	2.40	2.40	42.3	0.50	642
MP	26710	99.82	99.82	7.38	3.63	28.5

Signal Transduction

1	None			
2	10 µM PGJ₂			
3	20 µM GW9662	24h incubation		
4	50 µg/ml Fucoidan			
5	25 µg/ml Seanol			

Future Directions

- Many challenges in ensuring accurate and meaningful results
 - Many remain poorly standardized
 - No widely available internal and external quality control materials and programs
 - Specimen quality, anticoagulation, reference ranges, etc.

Future Directions

- Genomics and proteomics are powerful tools for studying platelets.
 - Gene screening for known variations
 - Direct sequencing of promoters, exons and splice sites
 - Whole exome sequencing
 - Proteomics allows a large-scale study of the platelet proteome.

References

- Cattaneo M, et al. JTH 2013;11:1183-9
- Harrison P & Lordkipanidzé M. HOCNA 2013;27:411-41
- Jennings LK. TH 2009;102:248-57
- Kehrel BE & Brodde MF. TMH 2013;40:73-86
- Tantry US, et al. JACC 2013 (E pub)
- http://www.ascp.org/
- http://www.islh.org
- http://www.isth.org

Welcome to Busan

Welcome to Busan

Welcome to Busan

