Issues on Design of Clinical Trials

Jimin Choi, PhD
Senior Biostatistician
Clinical Research & Trial Center
Dong-A University Hospital

Outline

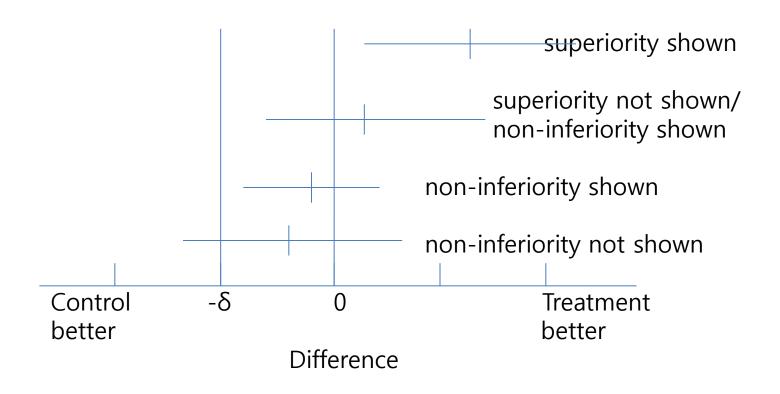
- Why do clinical trials?
- Types of hypotheses
- Design of clinical trials
- Sample size & power considerations
- How do we minimize bias?
- Concluding remark

Why do clinical trials?

- To answer a clinical problem
- To gain new knowledge about a new or established treatment
- To support a "claim"
- For gaining government regulatory approval
- For marketing a drug, device, or technique

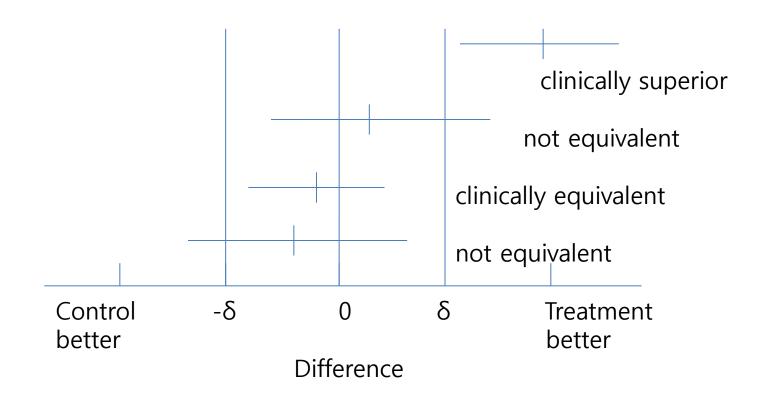
Principles of clinical trials

- Ethics
- Scientific validity and integrity


What is step one?

Start with a hypothesis

- Must be in the form of a statement
- The question must be "answerable"
- Choose the outcome you wish to measure

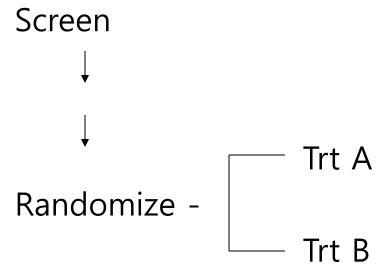

Types of hypotheses

Superiority Non-inferiority Equivalence

Types of hypotheses

Superiority Non-inferiority Equivalence

Non-Inferiority Challenges


Requires high quality trial

Treatment margin somewhat arbitrary

Commonly used designs

- Parallel design
- Factorial design
- Cross-over design
- Group sequential design etc

Parallel Design

- H₀: A vs. B
- Advantage
 - Simple, General Use
 - Valid Comparison
- Disadvantage
 - Few Questions/Study

Factorial Design

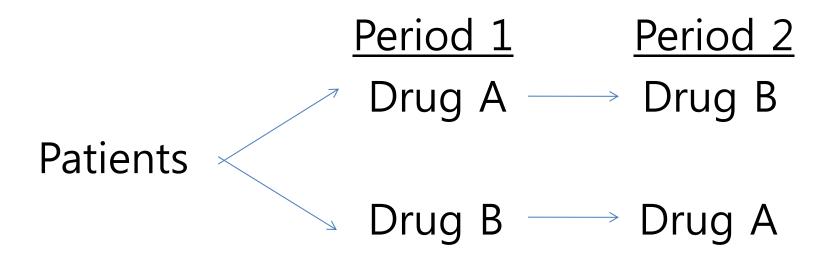
• Schema

		Factor I	
		Placebo	Trt B
Factor II	Placebo	N/4	N/4
	Trt A	N/4	N/4

A vs. Placebo

B vs. Placebo

Design of clinical trials


Factorial Design

- Advantages
 - Two studies for one
 - Discover interactions
- Disadvantages
 - Test of main effect assumes no interaction
 - Often inadequate power to test for interaction
 - Compliance
- Examples
 - Physicians' Health Study (PHS) NEJM 321(3):129-135, 1989.
 - Final report on the aspirin component
 - Canadian Cooperative Stroke Study (1978) NEJM p. 53

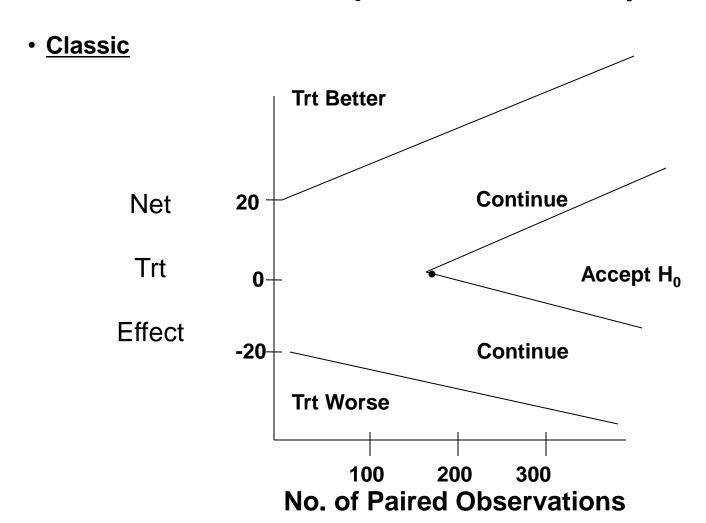
Crossover Design

- Each patient receives both treatments.
- Order of treatment is randomized.
- Comparison is "within" patients not "between" patients.

Crossover Design

Crossover Design

Patients must complete both arms. Drug must be short acting.


- Advantages:
 - Sample size reduced.
 - Allows a preference question
- Disadvantages:
 - Possible carry-over effect
 - Possible period effect (time)

Sequential Design

- Continue to randomize subjects until H₀ is either rejected or "accepted"
- A large statistical literature for classical sequential designs
- Developed for industrial setting
- Modified for clinical trials
 (e.g. Armitage 1975, Sequential Medical Trials)

Classical Sequential Design

• Continue to randomize subjects until H₀ is either rejected or "accepted"

What is minimum number of patients to conduct a clinical trial?

Sample size & power calculation

Primary objective & primary endpoint

Definition of primary objective & primary endpoint is required.

Primary endpoint	Test method		
Categorical data	Chi square test		
Continuous data	T test/ ANOVA		
Survival data	Log rank test		

Sample size calculation (1)

$$P_{C} = 0.10$$

 $P_{T} = 0.05$

$$P_{C}$$
 - P_{T} = 0.05 (risk reduction rate: 50%)

What is the required number of patients to detect 50% reduction of mortality rate?

Sample size calculation (2)

 $n_C = r n_T$

$$n_{c} = \frac{\frac{r+1}{r} \left(z_{\alpha/2} + z_{\beta}\right)^{2} p \left(1-p\right)}{\left(p_{1} - p_{2}\right)^{2}}$$

$$-\frac{p_{1} + p_{2}}{2}$$

Sample size calculation (3)

Mortality rate					
Effect size	Treatment	Control	Alpha	Power	n per group
5%	5%	10%	0.05	80%	435
5%	5%	10%	0.01	80%	647
4%	6%	10%	0.05	58%	435
3%	7%	10%	0.05	35%	435
4%	6%	10%	0.05	80%	721
3%	7%	10%	0.05	80%	1,356

Sample size calculation (4)

Change	Sample size
alpha (type I error rate) ↓	↑
Power ↑	↑
Effect size ↑	↓
Effect size ↓	↑
Proportion near to 50%	↑

What is a clinical trial's greatest enemy?

Bias

How do we minimize bias?

- Make sure groups are equivalent
- => Randomization
- Standardize outcome assessment
- => Blinding
- Unbiased data analysis
- => ITT principle

Concluding remark

It is highly recommended to co-work with biostatistician from the early stage of planning clinical trials.

Thank you for your attention.