Basic of IVUS & OCT

대구파티마병원 순환기내과 이 봉 렬

Coronary aretry imaging

- Coronary angiography
- IVUS
 - Gray-scale
 - VH-IVUS
- OCT
- CTCA
- MRCA

Selective coronary angiography

- First performed by Sones in 1959
- "Gold standard" for identifying the presence or absence of coronary arterial narrowings
- Define therapeutic options and determine the prognosis of patients with symptoms or signs of ischemic CAD.

Major Limitation of Coronary Angiography

Coronary Angiogram: *Is it enough to evaluate coronary* disease?

"Coronary angiography is only a luminogram." Limitations

- 1. Simple planar information
- 2. Compromising the lumen in late stage
 - of atherosclerosis (Glagov's theory)
- 3. No information about plaque characteristics

No information about the composition of the atherosclerotic plaque

Angiography vs. IVUS

Characteristic	Angiography	IVUS
Vessel lumen detail	+	++
Vessel wall detail	-	++++
Plaque composition	-	+++
Vessel dimensions	++	++++
Identify disease in "normal"vessel	+	++++
Detect diffuse disease	+	++++
Evaluate "hazziness"	±	+++
Arterial remodeling	±	++++
Borderline lesions – morphology	+	++++
Suboptimal results	+	+++
Clot vs. dissection	±	+++
Predict complications	±	possible

Catheter Systems: Transducer Design

Catheter Systems: Commercial

Mechanical

Soston Scientific

- a 40-MHz coronary catheter that is 2.5 F at the tip and 3.2 F at the largest dimension
- compatible with a 6 F guiding catheter

Solid-State

- ♦ Volcano Therapeutics
- a 20-MHz coronary catheter that is 2.9 F in size
- compatible with a 5 F guiding catheter

Normal Artery: 3-layered appearance

Cross Sectional Imaging

Normal vs. Diseased Coronary Artery

Cross-sectional image

Longitudinal image

IVUS Assessment

- Qualitative assessment
 - Plaque composition: soft, fibrous, calcific
 - Lesion morphology: dissection, plaque rupture
- Quantitative measurement
 - Diameter
 - Area
 - Volume
 - Length

Plaque Composition Fibrous

Soft

Calcified

Soft plaque has a low echogenic apperance (more echolucent than advenitia)

- Fibrous plaque shows an intermediate echogenecity between soft and calcified plaques, with some degree of signal attenuation
- Calcified plaque is characterized by brighted echo that overlies a dark shadow extended radially outward, known as an "acoustic shadowing"

Additional Plaque Features (I)

Dissection

- a freely mobile tissue arm extending into the lumen with clear blood speckle bw this tissue structure and the vessel wall
- IVUS can detect whether intimal flap extends into intima, media, and adventitia

Thrombi

- a sparkling pattern on real-time ultrasound imaging
- a lobulated mss projecting into the lumen
- echodensity is heterogenous and presence of microchannel

Additional Plaque Features (II) WWW.fatima.or.k

Ruptured plaque

- a plaque ulceration with a tear detected in a overlying fibrous cap
- multiple ruptures can be found in the same vessel as well as other vessel in patients with ACS

Intramural Hematoma

 an accumulation of blood within the medial space, displacing the IEM inward to EEM, with or without entry and exit point

NURD

(Non Uniform Rotational Distortion)

• When rotating transducer inside , the IVUS catheter is exposed to frictional forces (bending of catheter, hemostatic valve too tight), portion of the images are stretched or compacted.

Artifacts

• particularly, in tortous or calcified lesions

Ring-down

• Caused by transducer oscillation filling the area adjacent to the catheter with noise

IVUS

Artifacts

• Bright halo of variable thickness surrounding the catheter

Guide wire artifact

Blood Speckle

• Blood is echoreflective.

IVHS

Artifacts

- The intensity of reflection increases as blood flow velocity decreases.
- Flushing contrast or saline through guiding catheter may clear the lumen and help to identify tissue border

IVUS Artifacts

Reverberations

- multiple, equally spaced echoes or reflections that may occur when two strong reflectors <u>lie in the line of an ultrasound beam</u>
- echoes that are formed as the ultrasound bounces back and forth between the reflectors may create artifacts

⇒ between transducer and leading edge of Ca ⁺⁺ causing concentric arc at reproducible distance

Measurement: Image Op

Border Identification

- Lumen Intima interface
- Media Adventitia interface

Quantitative IVUS Parameters (1)

- CSA : Cross Sectional Area
- EEM (External Elastic Membrane) CSA
 : Vessel Area (VA)
- Lumen CSA: Lumen Area (LA)
- Plaque plus Media CSA
- = (EEM Lumen) CSA : Plaque Area (PA)

Minimal plaque plus media thickness Maximal lumen diameter Minimal lumen diameter Maximal plaque plus media thickness

Mintz and Nissen et al. JACC 2001;37:1478-92

Quantitative IVUS Parameters (II)

Lumen eccentricity

(maximal – minimal) lumen diameter

maximal lumen diameter

• Plaque plus media (or atheroma) eccentricity

(maximal – minimal) atheroma thickenss

 Minimal plaque plus media (or atheroma) thickness
 Maximal lumen diameter
 Minimal lumen diameter
 Maximal plaque plus media (or atheroma) thickness

Lumen area stenosis

(reference – minimum) lumen CSA

reference lumen CSA

• Plaque (or atheroma) burden

plaque plus media CSA

EEM CSA

Mintz and Nissen et al. JACC 2001;37:1478-92

Quantitative IVUS Parameters

Post-stenting

- Stent CSA
- Minimal stent diameter (a)
- Maximal stent diameter (b)
- Stent symmetry: (b-a) / b

Follow-up

Intimal hyperplasia CSA
Stent CSA – Lumen CSA

Basic Imaging of IVUS

Definition of "Lesion" and "Reference" segment

- <u>Lesion</u>: A lesion represents accumulation of atherosclerotic plaque compared with a predefined reference
- <u>Stenosis</u>: A stenosis is a lesion that compromises the lumen by at least 50% by cross-sectional area (CSA) (compared with a predefined reference segment lumen)
- <u>Proximal reference</u>: The site with the largest lumen proximal to a stenosis but within the same segment (usually within 10 mm of the stenosis with no major intervening branches)
- <u>Distal reference</u>: The site with the largest lumen distal to a stenosis but within the same segment
 - Average reference lumen size: The average value of lumen size at the proximal and distal reference sites

Length Measurements

- Motorized transducer pullback
- Number of seconds X pullback speed
- (Number of frames / frame rate) X pullback speed

Automatic Volumetric Assessment

- ✓ Lumen volume
- ✓ EEM volume
- ✓ P&M volume
- ✓ % atheroma volume
- ✓ Stent volume
- ✓ IH volume
- ✓ %IH volume
- ✓ Malapposition volume

Optical Coherence Tomography

- Optical analogue of intravascular ultrasound
- high-resolution tomographic intra-arterial imaging

Imaging Wire 0.019 "Occlusive Method

Imaging Wire 0.019" "Non-Occlusive Method"

Selective Guide Catheter Engagement

Regar et al. Eur Heart J 200 tomography in cardiovascu

2nd Generation OCT Fourier Domain OCT Regar E, van Leeuwen AMC (OFDI/Frequency/Spectral Domain/Swept Source) Monorail Imaging Catheter

Non-Occlusive

OFDI

10 µm

25 - 40 μm

IVUS OCT

10 µm

25 - 40 μm

Resolution(axial)
(lateral)100 - 150 μm
150 - 300 μmSize of imaging core0.8 mm
40 - 60 dBDynamic range40 - 60 dBFrame rate30 frames/s

Scan area

Max. penetration Blood clearing Balloon Occlusion Flushing Pullback

Safety: 2nd Generation OCT

P. Barlis et al, EuroIntervention 2009;5:90-95

Safety: 2nd Generation OCT

P. Barlis et al, EuroIntervention 2009;5:90-95

OCT: Clinical application

- Plaque characterization
- Stent assessment

Plaque characteristics

Lipid-rich

Calcific

- Homogeneous
- Signal-rich regions

Fibrous

- Homogenous
- Signal-poor regions
- diffuse borders

- Heterogeneous
- signal-poor regions
- Sharp borders

White

Light Yellow

Yellow

Intense Yellow

Red Thrombus

Sensitivity = 95% Specificity = 88% Positive predictive value = 86% Negative predictive value =95%

White Thrombus

Red thrombus was identified as high-backscattering protrusions inside the lumen of the artery, with signal-free shadowing in the OCT image.

<u>White thrombus</u> was identified as low-backscattering projections in the OCT image.

In vivo comparison of OCT and angioscopy in assessing culprit lesions in 30 AMI patients

Plaque rupture

Incidence=47%

Plaque erosion

Incidence=73%

Incidence=40%

대구파티마병원

Incidence=0%

J Am Coll Cardiol 2007;50:933-9)

OCT: Clinical application

- Plaque characterization
- Stent assessment

OCT Findings Post Stenting Comparison OCT vs IVUS

Bouma et al, Heart 2003;89:317-321

OCT Findings Post Stenting Incidence of periprocedural vessel trauma

A [*] Lightlab Imaging		B.	C		
	Edge dissection	Intra-stent dissection	Tissue prolapse	Strut malapposition	
	26.0%	87.5%	97.5%	65.5%	
Cohen's Kappa	0.77	1.0	0.78	0.83	
n=80 vessels					
4					

Gonzalo N et al., Heart 2009

OCT Stent Assessment: Tissue Coverage at Long-term FUP

Lumen Area, Stent Area, Strut-Lumen Distance

Zoom: 5.5x

Restenotic tissue structure

Homogeneous: restenotic tissue has uniform optical properties and does not show focal variations in backscattering pattern.

Heterogeneous: restenotic tissue has focally changing optical properties and shows various backscattering patterns

Lavered: restenotic tissue consists of concentric layers with different optical properties: an adluminal high scattering layer and an abluminal low scattering layer

Restenotic tissue backscatter

High: the majority of the tissue shows high backscatter and appears bright

Low: the majority of the tissue shows low backscatter and appears dark or black

Microvessels visible

well delineated low vessel

Yes: microvessels appear as backscattering structures less than 200 micron in diameter that show a trajectory within the

No

Lumen shape

Regular: lumen border is sharpy delineated, smooth and circular

Irregular: lumen border irregular with tissue protrusions from the vessel wall into the lumen

Presence of intraluminal material

Yes: there is visible material inside the vessel lumen.

No

OCT assessment of stent restenosis

OCT

- Advantages
 - High resolution and seductive images
 - Evaluate detailed plaque morphology : lipid pool, cap thickness
 - Thrombus, vulnerable plaque
- Limitations
 - Shallow penetration depth (<2mm): true vessel sizing, assessment of plaque burden, large vessel or plaque, lesions with heterogenous composition
 - Discrimination between lipid and calcified lesions
 - Attenuation by blood → Need to create blood free zone

OCT vs. IVUS: *Strengths and Weaknesses*

	ОСТ	IVUS
Lumen Area	Mostly +++ (not ostia)	++
Dissection	+++	+
Stent assessment	+++	+
Plaque characteristics/plaque burden	+	+++
In-stent restenosis	+++	+
Thrombus	++	+
Lesion cap thickness, neointimal coverage	+++	+
Identifying "normal vessel" in diffuse disease	-	++
Ease of use	+	+++

The superior resolution of OCT compared to IVUS only improves on the identification of small, clinically unimportant edge dissections, stent malapposition, etc.

Dissections

Stent Malapposition In-stent Restenosis

경청해주셔서 감사합니다.

IVUS Guided Intervention

<u>Preinterventional lesion assessment</u> Significance Lesion characteristics Anatomical relationship with other vessel

Choice of devices Determine device size and length Making strategy of intervention

Postinterventional assessment Accuracy of intervention Procedure-related complication

Pre Intervention Assessment - Lesion Significance Determination -

Large plaque burden can occur in the <u>absence</u> of any obstruction

Assess whether it is "flow limiting"

- Percent Lumen Area Stenosis
- Minimal Lumen Area (MLA)

GÐ

Lesion Significance Percent Lumen Area Stenosis

Mintz G et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, measurement and Reporting of Intravascular Ultrasound; J. Amer. College of Card. 2001:1478-1492. Images Property of Boston Scientific, Corp.

Lesion Significance Minimum Lumen Area (MLA)

ONE measurement

Measure lumen area at the tightest point <u>In Proximal Epicardial Vessels:</u> <4.0 mm² - generally considered significant¹

In Left Main Vessel Type: <6.0 mm² - generally considered significant in an average-sized patient with focal disease²

1. Abizaid A, et al. Long term follow-up after percutaneous transluminal coronary angioplasty was not performed based on intravascular ultrasound findings: importance of lumen dimensions. Circulation. 1999 Jul 20; 100(3):256-261

2 Jasti V, et al. Correlations between fractional flow reserve and intravascular ultrasound in patients with ambiguous left main coronary artery stenosis. Circulation. 2004; 110:2831-2836. Images Property of Boston Scientific, Corp.

Interventional Sizing

IVUS Diameter Determination

Diameter Determination¹

Measure lumen at reference point (within the image slice with the largest lumen and smallest plaque burden)

3.0 mm

B2

2. Size Interventional device accordingly

1. Mintz G et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound; J. Amer. College of Card. 2001:1478-1492 Images Property of Boston Scientific, Corp.

Interventional Sizing

IVUS Length Determination

1.

3.5 mm

Length Determination

- Automatic pullback required
- 2. Bookmark proximal reference point and distal reference point
- 3. Measure length between two bookmarks

3.0 mm

B2

Post Stent Measurement

Stent Expansion Measurement

Stent Expansion

- 1. Ensure apposition to vessel wall
- 2. Measure stent lumen area at the tightest point
- 3. Compare measurement to distal reference lumen area
- A stent MLD that is 90% of the distal reference lumen area is generally considered fully expanded¹

Apposition Lesion coverage Complications - Dissection

Percent

Minimal Stent Diameter Minimal Stent Area